python 中 常用到的 numpy 函数 整理

转载 2016年08月29日 11:28:42

http://blog.csdn.net/timidsmile/article/details/16963699

1. 创建二维数组  array()   :

set = array([[1., 2, ],[3., 4.],[5., 6.],[7., 9.]])


求 数组的 行数:

>>> set.shape[0]
4

求 数组的列数:

>>> set.shape[1]


>>> set.shape
(4, 2)

>>> set.dtype
dtype('float64')

记得 >>> from numpy import * 


2  empty() 函数:

[python] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. >>> a = empty([22])  
  2. >>> a  
  3. array([[  2.01269048e-313,   4.44659081e-323],  
  4.        [  5.03965339e+223,   6.48588014e-310]])  
  5. >>> b = empty([22], dtype = int)  
  6. >>> b  
  7. array([[1998856336534944],  
  8.        [ 2460004,  2460004]])  
  9. >>> c = empty([22], dtype = int, order = 'C')  
  10. >>> c  
  11. array([[1998858136534944],  
  12.        [ 2460004,  2460004]])  
  13. >>> d = empty([22], dtype = int ,order = 'F')  
  14. >>> d  
  15. array([[19857521,  2460004],  
  16.        [36534944,  2460004]])  
  17. >>>   

最后一个参数,返回数组在内存中的存放顺序,

C代表C语言风格, row major

F代表····,column  major


3.  eye()

[python] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. >>> e1 = eye(230, dtype = int)  
  2. >>> e1  
  3. array([[100],  
  4.        [010]])  
  5. >>> e2 = eye(3)  
  6. >>> e2  
  7. array([[ 1.,  0.,  0.],  
  8.        [ 0.,  1.,  0.],  
  9.        [ 0.,  0.,  1.]])  
  10. >>> e3 = eye(3, dtype = int)  
  11. >>> e3  
  12. array([[100],  
  13.        [010],  
  14.        [001]])  
  15. >>> e4 = eye(31, dtype = int)  
  16. >>> e4  
  17. array([[1],  
  18.        [0],  
  19.        [0]])  
  20. >>> e5 = eye(3, k = 1, dtype = int)  
  21. >>> e5  
  22. array([[010],  
  23.        [001],  
  24.        [000]])  
  25. >>> e6 = eye(3, k = -1, dtype = int)  
  26. >>> e6  
  27. array([[000],  
  28.        [100],  
  29.        [010]])  
  30. >>>   

第一个参数N = 列数

第二个参数 M = 行数,省略代表M = N 

第三个参数 k 代表对角线位置, = 0 代表主对角线, +1就向右上方偏移1, -1 就向左下角偏移1

第四个参数表示类型 dtype 默认为 float 类型


4 。 创建 方阵 identity()

[python] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. >>> i1 = identity(3)  
  2. >>> i1  
  3. array([[ 1.,  0.,  0.],  
  4.        [ 0.,  1.,  0.],  
  5.        [ 0.,  0.,  1.]])  
  6. >>> i2 = identity(3, dtype = int)  
  7. >>> i2  
  8. array([[100],  
  9.        [010],  
  10.        [001]])  
  11. >>>   


只有两个参数,第一个表示 行(列)数,第二个表示类型(默认为float)类型


5.  生成一个元素全为1的数组

[python] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. >>> o1 = ones(3)  
  2. >>> o1  
  3. array([ 1.,  1.,  1.])  
  4. >>> o1.shape  
  5. (3,)  


要指定完整的shape(完整的行数和列数)的话:


[python] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. >>> o4 = ones( (23), dtype = int)  
  2. >>> o4  
  3. array([[111],  
  4.        [111]])  
  5. >>>   


6. zeros() 全是0 的矩阵

[python] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. <pre code_snippet_id="82520" snippet_file_name="blog_20131126_6_5493221" name="code" class="python">>>> from numpy import *  
  2. >>> z1 = zeros(3)  
  3. >>> z1  
  4. array([ 0.,  0.,  0.])  
  5. >>> z1.shape  
  6. (3,)  
  7. >>> z2 = zeros((23), dtype = int)  
  8. >>> z2  
  9. array([[000],  
  10.        [000]])  
  11. >>> z2.shape  
  12. (23)  
  13. >>> s = (32)  
  14. z4 = zeros(s)  
  15. >>> z4  
  16. array([[ 0.,  0.],  
  17.        [ 0.,  0.],  
  18.        [ 0.,  0.]])  
  19. >>> z4.shape  
  20. (32)</pre><pre code_snippet_id="82520" snippet_file_name="blog_20131126_12_2832072" name="code" class="python"></pre><pre code_snippet_id="82520" snippet_file_name="blog_20131126_12_2832072" name="code" class="python"></pre><pre code_snippet_id="82520" snippet_file_name="blog_20131126_9_956672" name="code" class="python">ones_like()  zeros_like()</pre><pre code_snippet_id="82520" snippet_file_name="blog_20131126_12_2832072" name="code" class="python"></pre><pre code_snippet_id="82520" snippet_file_name="blog_20131126_11_8513673" name="code" class="python"><pre code_snippet_id="82520" snippet_file_name="blog_20131126_11_8513673" name="code" class="python">>>> from numpy import *  
  21. >>> s = (32)  
  22. >>> a = array(s)  
  23. >>> a  
  24. array([32])  
  25. >>> a.shape  
  26. (2,)  
  27. >>> z = zeros(s, dtype = int)  
  28. >>> zz = zeros_like(z)  
  29. >>> zz  
  30. array([[00],  
  31.        [00],  
  32.        [00]])  
  33. >>> ooo = ones_like(z)  
  34. >>> ooo = ones_like(z)  
  35. >>> ooo  
  36. array([[11],  
  37.        [11],  
  38.        [11]])  
  39. >>> </pre><br>  
  40. <br>  
  41. <p></p>  
  42. <pre></pre>  
  43. <pre code_snippet_id="82520" snippet_file_name="blog_20131126_12_2832072" name="code" class="python"></pre>  
  44. <pre></pre>  
  45. <p></p>  
  46.      
  47. </pre>  



举报

相关文章推荐

python 中 常用到的 numpy 函数 整理

1. 创建二维数组  array()   : set = array([[1., 2, ],[3., 4.],[5., 6.],[7., 9.]]) 求 数组的 行数: ...

python 中 常用到的 numpy 函数 整理

1. 创建二维数组  array()   : set = array([[1., 2, ],[3., 4.],[5., 6.],[7., 9.]]) 求 数组的 行数: >>> ...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

python Numpy 函数整理(一)

python Numpy 函数整理(一)译自 Numpy functions by category一、数组创建(0/1矩阵)1、numpy.empty(shape, dtype=float, ord...

Python常用函数整理

python 文件操作 python:目录与文件操作 os.listdir(dirname):列出dirname下的目录和文件 os.getcwd():获得当前工作目录 os.curdir:返...

Numpy常用函数

文件读写1.文件载入loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0,...

numpy常用函数

持续更新ing。。。

Python拓展包:Numpy,pandas...常用函数

—————numpy———————– arr = np.array([1,2,3], dtype=np.float64)#创建ndarray时候也可以指定dtype arr.astype(dtyp...

Python numpy 常用函数总结

数组数组常用函数1.where() 按条件返回数组的索引值 2.take(a,index) 从数组a中按照索引index取值 3.linspace(a,b,N) 返回一个在(a,b)范围内均...

Makefile中常用的函数

在Makefile中可以使用函数来处理变量,从而让我们的命令或是规则更为的灵活和具有智能。make所支持的函数也不算很多,不过已经足够我们的操作了。函数调用后,函数的返回值可以当做变量来使用。 一、...

【PHP】数组常用函数、字符串中常用函数、日期函数、数学函数

/*-----------------------------数组常用函数-----------------------*/ $arr=array(a,b,c,d,e); echo""; print_...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)