决策树python sklearn 示例

原创 2017年10月11日 20:47:58

本文主要是使用python sklearn,完成决策树的demo,以及可视化,最终生成的决策树结果。

from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.tree import export_graphviz
import subprocess


def visualize_tree(tree, feature_name, dot_file):
    """Create tree png using graphviz.
    tree -- scikit-learn DecsisionTree.
    feature_names -- list of feature names.
    dot_file -- dot file name and path
    """
    with open("tree.dot", 'w') as f:
        export_graphviz(tree, out_file=f,
                        feature_names=feature_name)

    dt_png = "dt.png"
    command = ["dot", "-Tpng", dot_file, "-o", dt_png]
    try:
        subprocess.check_call(command)
    except Exception as e:
        print e
        exit("Could not run dot, ie graphviz, to "
             "produce visualization")


def iris_demo():
    clf = tree.DecisionTreeClassifier()
    iris = load_iris()
    # iris.data属性150*4,iris.target 类别归一化为了0,1,2(150*1)
    clf = clf.fit(iris.data, iris.target)
    dot_file = 'tree.dot'
    tree.export_graphviz(clf, out_file=dot_file)
    visualize_tree(clf, iris.feature_names, dot_file)

    # (graph,) = pydot.graph_from_dot_file('tree.dot')
    # graph.write_png('somefile.png')


if __name__ == '__main__':
    iris_demo()
    pass

数据集


1. 花的分类的四种属性,150个示例

这里写图片描述

2. 花的分类,一共三类对应于0,1,2

这里写图片描述

3. 花的四个属性的描述

这里写图片描述

最终生成的结果:

这里写图片描述

pydot的安装见另一篇bolg

http://blog.csdn.net/haluoluo211/article/details/78200078

转载注明出处,并在下面留言!!!

参考

http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html

http://www.kdnuggets.com/2017/05/simplifying-decision-tree-interpretation-decision-rules-python.html

使用 sklearn 实现决策树

1. 基本环境 安装 anaconda 环境, 由于国内登陆不了他的官网 https://www.continuum.io/downloads, 不过可以使用国内的镜像站点: https://mir...
  • zhyh1435589631
  • zhyh1435589631
  • 2016年12月25日 14:44
  • 4318

CART决策树的sklearn实现及其GraphViz可视化

这一部分,我使用了sklearn来调用决策树模型对葡萄酒数据进行分类。在此之外,使用Python调用AT&T实验室开源的画图工具GraphViz软件以实现决策树的可视化。from sklearn.da...
  • chai_zheng
  • chai_zheng
  • 2017年10月13日 15:25
  • 1289

使用python+sklearn的决策树方法预测是否有信用风险

使用python+sklearn的决策树方法预测是否有信用风险
  • sun_shengyun
  • sun_shengyun
  • 2016年09月21日 11:01
  • 1940

Python sklearn库中决策树tree.DecisionTreeClassifier()函数参数介绍

Python sklearn库中决策树tree.DecisionTreeClassifier()函数参数介绍
  • li980828298
  • li980828298
  • 2016年04月17日 13:12
  • 11725

sklearn中的回归决策树

回归决策树通过使用 DecisionTreeRegressor 类也可以用来解决回归问题。如在分类设置中,拟合方法将数组X和数组y作为参数,只有在这种情况下,y数组预期才是浮点值:下面是简单的使用示例...
  • FontThrone
  • FontThrone
  • 2017年12月17日 14:14
  • 419

用python实现c4.5算法,并进行悲观剪枝

#coding=utf-8 import xlrd import xlwt import math import operator from datetime import date,datetime...
  • o1101574955
  • o1101574955
  • 2015年12月21日 13:43
  • 3156

机器学习教程之13-决策树(decision tree)的sklearn实现

0.概述决策树(decision tree)是一种基本的分类与回归方法。 主要优点:模型具有可读性,分类速度快。 决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。1.决策树模型与...
  • u010837794
  • u010837794
  • 2017年08月02日 20:38
  • 1510

决策树 (Decision Tree) 进阶应用 CART剪枝方法及Python实现方式

决策树  Decision Tree C5.0 先简述下C5.0,C5.0是一个商业软件,对于公众是不可得到的。它是在C4.5算法做了一些改进。比之C45,减少了内存,使用更少的规则集,并且准确率...
  • jerry81333
  • jerry81333
  • 2016年11月16日 03:48
  • 4622

scikit-learn学习之决策树算法

决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。...
  • Gamer_gyt
  • Gamer_gyt
  • 2016年04月23日 20:44
  • 12540

基于python的sklearn库的决策树算法基本实现

不能再咸鱼了不能再被嘲笑了所以周末做各种总结下周新计划开始!!!立完flag正文开始基于python的sklearn库的决策树算法基本实现关于不同年龄等几个特征的人进行是否购买电脑的预测 导入的训练...
  • Gentle_Guan
  • Gentle_Guan
  • 2017年06月18日 18:40
  • 363
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:决策树python sklearn 示例
举报原因:
原因补充:

(最多只允许输入30个字)