关闭

[置顶] “ML学分计划”说明书

##计划的由来## 我们是一群对机器学习感兴趣的小伙伴,对于神奇的机器学习经常有“一探究竟”的冲动,却因为孤身一人学习的寂寞、亦或繁忙考试工作之余的小小拖延症,而没有持续这份对知识的渴求和热情。 由于深感类似情况的小伙伴之多,我们希望建立一个“ML学分计划”——机器学习的学习和分享计划——来帮助我们一起更高效地学习、更集中地整理分享我们的知识和经验。因为我们也深信”证明自己真的透彻理解一个知识,最好...
阅读(13610) 评论(9)

深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全

内容识别填充(译注: Content-aware fill ,是 photoshop 的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。在这篇博客中,我会介绍 Raymond Yeh 和 Chen Chen 等人的一篇论文,“基于感知和语境损失的图像语义修补...
阅读(13421) 评论(6)

机器学习系列(20)_机器学习性能改善备忘单

机器学习最有价值(实际应用最广)的部分是预测性建模。也就是在历史数据上进行训练,在新数据上做出预测。 而预测性建模的首要问题是: 如何才能得到更好的结果? 这个备忘单基于本人多年的实践,以及我对顶级机器学习专家和大赛优胜者的研究。...
阅读(9806) 评论(2)

机器学习系列(19)_通用机器学习流程与问题解决架构模板

本文由Searchmetrics公司高级数据科学家Abhishek Thakur提供。 “一个中等水平的数据科学家每天都要处理大量的数据。一些人说超过60%到70%的时间都用于数据清理、数据处理及格式转化,以便于在之后应用机器学习模型。这篇文章的重点便在后者—— 应用机器学习模型(包括预处理的阶段)。此文讨论到的内容来源于我参加的过的数百次的机器学习竞赛。请大家注意这里讨论的方法是大体上适用的,当然还有很多被专业”...
阅读(16710) 评论(0)

机器学习系列(18)_Kaggle债务违约预测冠军经验分享

债务违约预测是Kaggle中的一个比赛,本文将介绍取得第一名成绩的方法,本次比赛的目标包括两个方面。其一是建立一个模型,债务人可以通过它来更好地进行财务方面的决策。其二是债权人可以预测这个债务人何时会陷入到财务方面的困境。最终目的是,通过预测未来两年内债务违约的概率,来改进现有的信用评分制度。这是一个极度复杂和困难的Kaggle挑战,因为银行和各种借贷机构一直都在不断地寻找和优化信用评分的算法。这个模型是银行用来判定...
阅读(17357) 评论(2)

机器学习系列(17)_Yelper推荐系统

“推荐”可是个当红话题。Netflix愿意用百万美金召求最佳的电影推荐算法,Facebook也为了登陆时的推荐服务开发了上百个项目,遑论现在市场上各式各样的应用都需要个性化服务。“从互联网中提取信息犹如用消防栓饮水”(Mitchell Kapor)。如今的信息量早已过载,要依据如此嘈杂的信息做出正确决定显然是艰难的。这也是为什么推荐系统日渐流行,尤其在像Netflix, Amazon, Echo,和Facebook...
阅读(19261) 评论(16)

机器学习系列(16)_怎样找到一份深度学习的工作(附学习材料,资源与建议)

如果你是一个软件工程师(或者你现在正在学习这一方面),你肯定有机会听说过深度学习(有时候深度学习缩写为”DL”)。它现在是一个热门、且快速发展的研究领域,解决工业界的一系列问题,从图像识别、手写识别到机器翻译,更甚于AlphaGo4比1击败了世界围棋冠军。 大部分人认为找与深度学习相关的工作应该具有博士学位或者大量的相关经验,但是如果你已经是一名很好的工程师,那你就可以很快、很好的学习这些必要的技能和技巧。...
阅读(24604) 评论(9)

机器学习系列(15)_SVM碎碎念part3:如何找到最优分离超平面

是的,咱们第1篇blog介绍了目标;第2篇blog介绍了向量相关的背景数学知识,看到了如何求解Margin的值;今天这个部分主要目的是和大家一起来看看,选择最优超平面的推理过程。 以下是本篇的一个简短目录: 如何找到最优超平面 如何计算两超平面间的距离 SVM的最优化问题是什么...
阅读(13664) 评论(2)

机器学习系列(14)_SVM碎碎念part2:SVM中的向量与空间距离

第一篇博客part1的部分很短,就说了一个事情,SVM在试图找一个Max Margin(最大间隔)的分离超平面。OK,这个部分要补补基础,复习一下数学,为后面的学习做准备(墙裂建议数学基础好的同学略过此节基础内容...)。咱们来看看SVM涉及到的向量和空间距离。...
阅读(10212) 评论(3)

机器学习系列(13)_SVM碎碎念part1:间隔

欠的总归是要还的,SVM这么神圣的算法是每个学习machine learning的同学可能会头痛却又不得不面对的,即使到现在为止博主这样的Math/CS渣都觉得一定没有领悟到SVM精髓,所以整理了一些边边角角的碎碎念,颤颤巍巍放到这个系列里,算是自己做个总结,也希望能对大家有一点点的帮助。这个SVM系列大部分内容来自Alexandre KOWALCZYK大神的[SVM Tutorial]...
阅读(8598) 评论(0)

机器学习系列(12)_XGBoost参数调优完全指南(附Python代码)

这篇文章主要讲了如何提升XGBoost模型的表现。首先,我们介绍了相比于GBM,为何XGBoost可以取得这么好的表现。紧接着,我们介绍了每个参数的细节。我们定义了一个可以重复使用的构造模型的函数。 最后,我们讨论了使用XGBoost解决问题的一般方法,在AV Data Hackathon 3.x problem数据上实践了这些方法。 希望看过这篇文章之后,你能有所收获...
阅读(28853) 评论(4)
102条 共11页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:1755925次
    • 积分:11153
    • 等级:
    • 排名:第1468名
    • 原创:101篇
    • 转载:1篇
    • 译文:0篇
    • 评论:686条
    个人介绍与联系方式

    寒小阳

    海淀区『明光村计算机职业技能学校』烟酒僧毕业。有几年机器学习/数据挖掘工作经验。大厂打过杂,做过几个NLP、推荐系统、点击率预估、深度学习图像分类/检索相关项目。欢迎联系和交流。


    EMAIL:hanxiaoyang.ml@gmail.com 

    QQ: 3127303203


    数据科学沙龙QQ群

    2000人群169492443(已满)
    2000人群564538990(已满)
    2000人群285273721
    不定期有机器学习/数据科学公开课和线上讨论


    其余机器学习QQ群

    439183906(已满), 373038809(已满),194141072(已满)

    相关资料推荐
    七月在线
    博客专栏