黑马程序员____矩阵相乘常规法和Strassen方法算法分析

本文介绍了矩阵相乘的常规方法和Strassen方法,包括各自的算法复杂度和伪代码实现。在测试中,尽管Strassen算法理论上具有更低的复杂度,但在实际应用中由于大量动态内存分配导致效率降低。通过设定计算界限,当矩阵尺寸小于特定值时使用常规法,优化后的Strassen算法在大尺度数据下展现出时间消耗的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

----------------------android培训java培训、期待与您交流! ----------------------

矩阵相乘是计算机编程领域的常见问题。按照常规方法解决问题的算法复杂度为,在矩阵规模超过一定规模后,复杂度增长使得计算时间过长,无法令人满意。显然,矩阵相乘的下界在,但这个想法过于理想。目前得到的最优方案为,由于最优方案的实现过于复杂,没有在计算机上完美实现。Strassen方法通过分治递归的思想,将算法的复杂度降到了左右,并且实现较为简单。本实验的目的就是在程序实现矩阵相乘常规法和Strassen方法的基础上,比较两者在不同数据规模下的速度。

一、 算法分析

1. 矩阵相乘常规法

伪码实现如下:

MATRIX-MULTIPLY(A, B)

n rows[A]

let C be an n × n matrix

for i 1 to n

do for j 1 to n

do cij 0

for k 1 to n

do cij cij + aik× bkj

return C

通过伪代码循环嵌套的分析,可以直观地看出算法复杂度为

2. 矩阵相乘Strassen

将一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值