【数据结构】堆的实现(包括:默认成员函数,插元素push,删元素pop,访问根节点top,判空,大小)

原创 2016年05月30日 17:18:49

在数据结构里,堆是一类很重要的结构。堆结构是一组数组对象,我们可以把它当作是一颗完全二叉树。


最大堆:堆里每一个父亲节点大于它的子女节点。

最小堆:堆里每一个父亲节点小于它的子女节点。

如图就是一个最大堆:

wKioL1cbOTSjDiLRAAAZq4jMjWY012.png

实现代码时我的测试序列是:int a[] = { 10, 11, 13, 12, 16, 18, 15, 17, 14, 19 };

我们把它的图画出来,便于分析。

wKioL1cbVunRJvBdAABYpvWkEaw905.png

我们来实现如何将一个数组中的序列转变为最大堆。

若我们知道最大堆的代码后,只需将代码稍微修改一下就可以变成最小堆的代码。或者,我们可以用仿函数来提高代码的复用性。

实现代码如下:

建立头文件heap.hpp

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;

#include<assert.h>
#include<vector>

template <class T>
class Heap
{
public:
    Heap()
        :_a(NULL)
    {}


    //构造堆:先把各个元素接收到,再根据堆的特点将元素调整
    Heap(const T* array, size_t size)
    {
        _a.reserve(size);
        for (size_t i = 0; i < size; i++)
        {
            _a.push_back(array[i]);
        }

        //建堆
        int Size = size;
        for (int j = (_a.size() - 2) / 2; j>=0; j --)
        {
            _AdjustDown(j, Size);
        }
    }


    //拷贝构造
    Heap(const vector<T>& vec)
        :_a(NULL)
    {
        _a.reserve(vec.size());
        for (size_t i = 0; i < size; i++)
        {
            _a.push_back(vec[i]);
        }
    }

    //插入一个元素x:先插入到顺序表中,再根据具体元素大小向上调整确定插入元素的位置
    void Push(const T& x)
    {
        _a.push_back(x);
        _AdjustUp(_a.size() - 1);
    }


    //删除根节点
    void Pop()
    {
        size_t size = _a.size();
        assert(size > 0);//防御式编程,确定是否可以删除元素
        swap(_a[0], _a[size - 1]);//若直接删除堆的根节点,则会使堆结构紊乱
        _a.pop_back();//将根节点与堆的最后一个节点交换位置,此时再对元素删除,以及将其调整于合适位置
        size = _a.size();
        _AdjustDown(0,size);
    }


    //访问堆的根节点
    T& GetTop()
    {
        size_t size = _a.size();
        assert(size > 0);
        return _a[0];
    }


    //将根节点向下调整
    void _AdjustDown(size_t parent,size_t size)
    {
        size_t child = 2 * parent + 1;
        while (child<size)
        {
            if (child+1 < size && _a[child] < _a[child + 1])
            {
                child++;
            }
            if (_a[child] > _a[parent])
            {
                swap(_a[child], _a[parent]);
                parent = child;
                child = 2 * parent + 1;
            }
            else
            {
                break;
            }
        }        
    }


    //向上调整
    void _AdjustUp(int child)
    {
        //无论插节点后为左子树还是右子树,都可用(child-2)/2计算出此时父节点的下标
        int parent = (child - 1) / 2;
        int size = _a.size();//size用int,若用size_t循环条件且为>=0则死循环
        while (child>0)//当child=0,说明此时已经到根节点位置,无需继续上调
        {
            //向上调整时,无需看左右节点哪个值大,只需要看是否父节点<根节点
            if (_a[child]>_a[parent])
            {
                swap(_a[child], _a[parent]);
                child = parent;
                parent = (child-1)/2;
            }
            else
            {
                break;
            }
        }
    }


    bool Empty()
    {
        size_t size = _a.size();
        assert(size >= 0);
        return size == 0;
    }


    size_t Size()
    {
        size_t size = _a.size();
        assert(size >= 0);
        return size;
    }
    
    
    void PrintHeap()
    {
        cout << "堆的序列为:" << endl;
        for (int i = 0; i < Size(); i++)
        {
            cout << _a[i] << "  ";
        }
        cout << endl;
    }
private:
    vector<T> _a;
};


建立源文件heap.cpp

#define _CRT_SECURE_NO_WARNINGS 1

#include "heap.hpp"

void Test()
{
    int a[] = { 10, 11, 13, 12, 16, 18, 15, 17, 14, 19 };
    Heap<int> h1(a, sizeof(a) / sizeof(a[0]));
    Heap<int> h2(h1);
    cout<<h1.GetTop()<<endl;
    cout << h1.Size() << endl;

    h1.Push(20);
    cout << h1.GetTop() << endl;

    h1.Pop();
    cout << h1.Size() << endl;

}


int main()
{
    Test();
    system("pause");
    return 0;
}


关于size(),GetTop()等函数我们可以通过测试函数Test()写出适当的测试用例来测试。


本文出自 “Han Jing's Blog” 博客,请务必保留此出处http://10740184.blog.51cto.com/10730184/1767076

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据结构与算法-实验2-自定义栈,并实现push、pop、改栈顶元素、取栈顶元素

#include  using namespace std;   const int maxnum = 3; typedef struct Datastack    ...

定义一个栈的数据结构,实现min函数,要求push,pop,min时间复杂度是0(1);找出字符串中的最长子串,要求子串不含重复字符,时间复杂度是O(n);

1.将IPV4转换成整数,要求高效。  2.定义一个栈的数据结构,实现min函数,要求push,pop,min时间复杂度是0(1);  3.数组a[n]里存有1到n的所有数,除了一个数remove...

定义栈的数据结构在Theta(1)时间复杂度内实现min,pop,push操作

思路: push,pop操作在常量时间复杂度内完成,没有问题,但是,min操作需要在常量时间复杂度内完成,一开始很容易想到在栈中保存一个变量min,用来保存最小值,那么如果需要min()操作时,只需要...

常用数据结构2——栈,实现PUSH、POP和取最小值操作算法时间复杂度为o(1)

看到一道笔试题,要求设计一个“栈”数据结构,使得对该栈的PUSH(进栈)、POP(出栈)以及取最小值(MIN)操作的时间复杂度为o(1)。我在网上搜了下,大家貌似也是用双栈来实现的。之所以说是双栈,是...

实现一个栈(元素遵守先入后出顺序),能够通过 min 方法在 O(1)时间内获取栈中的最小元素。同时,栈的基本操作:入栈(Push)、出栈(Pop),也是在O(1)时间内完成的

实现一个栈(元素遵守先入后出顺序),能够通过 min 方法在 O(1)时间内获取栈中的最小元素。同时,栈的基本操作:入栈(Push)、出栈(Pop),也是在O(1)时间内完成的。 此问题可分析为: 方...

数据结构例程——从根节点到每个叶子节点的路径之逆

本文是数据结构基础系列(6):树和二叉树中第11课时二叉树遍历非递归算法和第12课时层次遍历算法的例程。问题:设计算法输出从根节点到每个叶子节点的路径之逆。 解法1:利用二叉树后序遍历非递归算法中,...

程序员面试题精选100题(24)-栈的push、pop序列[数据结构]

题目:输入两个整数序列。其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序。为了简单起见,我们假设push序列的任意两个整数都是不相等的。 比如输入的push序列是1、2、...

程序员面试题精选100题(24)-栈的push、pop序列[数据结构]

题目:输入两个整数序列。其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序。为了简单起见,我们假设push序列的任意两个整数都是不相等的。 比如输入的push序列是1、...

程序员面试题精选100题(24)-栈的push、pop序列[数据结构]

题目:输入两个整数序列。其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序。为了简单起见,我们假设push序列的任意两个整数都是不相等的。 比如输入的push序列是1、...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)