线程中jion方法

原创 2007年09月28日 08:26:00

以前在看More Java Pitfalls时候,上面在第一个item的时候提到了线程的jion()方法,当时没怎么懂,想try下又苦于身边没电脑,所以那一放就忘了,今天突然想起就写了程序try了一下,大概明白了其意思


public class ThreadTestSupport extends Thread {
 public void run() {
  System.out.println("run in thread!");
  try {
   sleep(9000);
  } catch (Exception e) {
   e.printStackTrace();
  }
  System.out.println("run in thread!");
 }
}

public class ThreadTest {
 public static void main(String[] args) {
  Thread t1 = new Thread(new ThreadTestSupport());
  t1.start();
  try {
   t1.join();
  } catch (InterruptedException e) {
   e.printStackTrace();
  }
  System.out.println("run out the method!");
 }

}

运行ThreadTest.java其运行如下:
run in thread!
run in thread!
run out the method!


public class ThreadTest {
 public static void main(String[] args) {
  Thread t1 = new Thread(new ThreadTestSupport());
  t1.start();
  System.out.println("run out the method!");
 }

}

如果将ThreadTest.java改成如上代码,则运行结果如下:
run out the method!
run in thread!
run in thread!

所以就可以很明白api中对jion:等待该线程终止。

也就是说如果使用Thread.join()方法的话,必须要等Thread执行完后才执行该代码后面的代码
如果没有的话,Thread创建的线程只是运行该程序的线程的一个进程,并和其共同竞争cpu资源

但是More Java Pitfalls 上面提到的:进程有可能在线程完成前就结束 。不太明白这句话的意思,我也没try出来让进程在线程钱结束的状态 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

java的调度、优先级setPriority、yield、jion和守护线程setDaemon

package LyfPractice;/** * Created by fangjiejie on 2016/12/15. */ public class SThread { publi...

Java基础之多线程(二)--通讯、生产者消费者、停止、Jion方法

线程间通讯: /* 线程间通讯: 其实就是多个线程在操作同一个资源, 但是操作的动作不同。 */ class Res { private String name; private String...

MapReduce:实现jion的几种方法

reduce side join reduce side join是一种最简单的join方式,其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来...

线程方法操作

线程装用的打包Jar方法

  • 2012-09-10 08:50
  • 7.68MB
  • 下载

UI更新的方法和在非UI线程里面,怎么更新UI信息。细细的

更新UI的几种方式: runOnUiThread; Handler post; handler sendMessage; view post; 第一种方法:Handler post: ...

POSIX线程详细使用方法

  • 2012-05-12 11:05
  • 307KB
  • 下载

4种线程中操作UI界面的方法

我们经常会在后台线程中去做一些耗时的操作,比如去网络取数据。但是当数据取回来,需要显示到页面上的时候,会遇到一些小麻烦,因为我们都知道,android的UI页面是不允许在其他线程直接操作的。下面总结4...

线程的几个重要方法.doc

  • 2008-12-13 08:31
  • 32KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)