bzoj 4034 树上操作 树链剖分 解题报告

Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3

Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

思路

树链剖分。
线段树单点修改,标准修改;
修改子树的话,DFS序跑一次,修改就好了。
然后树链剖分,修改链。并不用LCA哦。。。

代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100000+5;
int n,m,num,head[N],id,pos[N],maxn[N],v[N],bl[N],sized[N],fa[N];
long long tag[4*N],sum[4*N];
struct edge
{
    int v,next;
}ed[2*N];
void build(int u,int v)
{
    ed[++num]=(edge){v,head[u]};head[u]=num;
    ed[++num]=(edge){u,head[v]};head[v]=num;
}
void dfs(int x)
{
    sized[x]=1;
    for (int i=head[x];i;i=ed[i].next)
    if (ed[i].v!=fa[x])
    {
        fa[ed[i].v]=x;
        dfs(ed[i].v);
        sized[x]+=sized[ed[i].v];
        maxn[x]=max(maxn[x],maxn[ed[i].v]); 
    }
}
void dfs2(int x,int chain)
{
    int k=0;
    bl[x]=chain;pos[x]=maxn[x]=++id;
    for (int i=head[i];i;i=ed[i].next)
    if (ed[i].v!=fa[x]&&sized[ed[i].v]>sized[k]) k=ed[i].v;
    if (k) {dfs2(k,chain);maxn[x]=max(maxn[x],maxn[k]);}
    for (int i=head[i];i;i=ed[i].next)
    if (ed[i].v!=fa[x]&&ed[i].v!=k)
    {
        dfs2(ed[i].v,ed[i].v);
        maxn[x]=max(maxn[x],maxn[ed[i].v]);
    }   
}
void pushdown(int lf,int rt,int k)
{
    if (lf==rt) return ;
    int mid=(lf+rt)/2;
    long long t=tag[k];
    tag[k]=0;
    tag[k*2]+=t;
    tag[k*2+1]+=t;
    sum[k*2]+=t*(mid-lf+1);
    sum[k*2+1]+=t*(rt-mid);
}
void add(int k,int lf,int rt,int x,int y,int val)
{
    if (tag[k]!=0) pushdown(lf,rt,k);
    if (lf==x&&y==rt) {tag[k]+=val;sum[k]+=(rt-lf+1)*val;return ;}
    int mid=(lf+rt)/2;
    if (x<=mid) add(k*2,lf,mid,x,min(mid,y),val);
    if (y>=mid+1) add(k*2+1,mid+1,rt,max(mid+1,x),y,val);
    sum[k]=sum[k*2]+sum[k*2+1];
}
long long query(int k,int lf,int rt,int x,int y)
{
    long long ans=0;
    if (tag[k]!=0) pushdown(lf,rt,k);
    if (lf==x&&rt==y) return sum[k];
    int mid=(lf+rt)/2;
    if (x<=mid) ans+=query(k*2,lf,mid,x,min(mid,y));
    if (y>=mid+1) ans+=query(k*2+1,mid+1,rt,max(mid+1,x),y);
    return ans;
}
long long query(int x)
{
    long long ans=0;
    while(bl[x]!=1)
    {
        ans+=query(1,1,n,pos[bl[x]],pos[x]);
        x=fa[bl[x]];
    }
    ans+=query(1,1,n,1,pos[x]);
    return ans;
}
int main()
{
    int opt,x,a;
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
    scanf("%d",&v[i]);
    for (int i=1;i<n;i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        build(u,v);
    }
    dfs(1);
    dfs2(1,1);
    for (int i=1;i<=n;i++)
    add(1,1,n,pos[i],pos[i],v[i]);
    while(m--)
    {
        scanf("%d%d",&opt,&x);
        if (opt==1) {scanf("%d",&a);add(1,1,n,pos[x],pos[x],a);}
        if (opt==2) {scanf("%d",&a);add(1,1,n,pos[x],maxn[x],a);}
        if (opt==3) printf("%lld\n",query(x));
    }
    return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值