浅谈全概率公式和贝叶斯公式

原创 2017年07月15日 16:25:56

一、条件概率公式

    举个例子,比如让你背对着一个人,让你猜猜背后这个人是女孩的概率是多少?直接猜测,肯定是只有50%的概率,假如现在告诉你背后这个人是个长头发,那么女的概率就变为90%。所以条件概率的意义就是,当给定条件发生变化后,会导致事件发生的可能性发生变化。

    条件概率由文氏图出发,比较容易理解:

    表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此:


由:



得:


这就是条件概率公式。

假如事件A与B相互独立,那么:


注:

相互独立:表示两个事件发生互不影响。而互斥:表示两个事件不能同时发生,(两个事件肯定没有交集)。互斥事件一定不独立(因为一件事的发生导致了另一件事不能发生);独立事件一定不互斥,(如果独立事件互斥, 那么根据互斥事件一定不独立,那么就矛盾了),但是在概率形式上具有一些巧合性,一般地:


但是,对于两个独立事件,依然可以等于0,因为事件A或者事件B发生的概率可能为0.所以,并不是一定表示互斥。互斥和独立的理解还是要究其真正意义,而不是表达形式。

二、全概率公式

    先举个例子,小张从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下:


每天上述三条路不拥堵的概率分别为:


假设遇到拥堵会迟到,那么小张从Home到Company不迟到的概率是多少?


其实不迟到就是对应着不拥堵,设事件C为到公司不迟到,事件为选择第i条路,则:




    全概率就是表示达到某个目的,有多种方式(或者造成某种结果,有多种原因),问达到目的的概率是多少(造成这种结果的概率是多少)?

全概率公式:

    设事件是一个完备事件组,则对于任意一个事件C,若有如下公式成立:


那么就称这个公式为全概率公式。

三、贝叶斯公式

    仍旧借用上述的例子,但是问题发生了改变,问题修改为:到达公司未迟到选择第1条路的概率是多少?

不是因为0.5这个概率表示的是,选择第一条路的时候并没有靠考虑是不是迟到,只是因为距离公司近才知道选择它的概率,而现在我们是知道未迟到这个结果,是在这个基础上问你选择第一条路的概率,所以并不是直接就可以得出的。

故有:




所以选择第一条路的概率为0.28.

    贝叶斯公式就是当已知结果,问导致这个结果的第i原因的可能性是多少?执果索因!

贝叶斯公式:

在已知条件概率和全概率的基础上,贝叶斯公式是很容易计算的:




版权声明:本文为博主原创文章,转载需注明出处。

相关文章推荐

printf输出二进制

include #include #include void main() {     int i = 31;     char s[10];       itoa(i, s, 2);   //转...

【机器学习实验】概率编程及贝叶斯方法

引言 贝叶斯方法是天生用来做推断的方法,然而它常隐藏在课本的数学分析的背后。 随着近年来贝叶斯方法在机器学习竞赛中成功应用,其重要性又引起了学习者的兴趣,但是其难点在于贝叶斯数学和概率编程之间...

被忽视和默认的“全概率”导出贝叶斯公式的鼻祖

讨论贝叶斯概率公式的最根本鼻祖公式
  • y39du8
  • y39du8
  • 2015年12月18日 20:35
  • 301

全概率公式和贝叶斯公式

  • 2015年12月07日 18:06
  • 1.2MB
  • 下载

详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

声明:本文为原创文章,发表于nebulaf91的csdn博客。欢迎转载,但请务必保留本信息,注明文章出处。 本文作者: nebulaf91 本文原始地址:最大似然估计(Maximum likeli...

贝叶斯概率公式浅解

最近在雷达多目标跟踪技术,其中的一大堆概率论方面的知识让我万分头疼,所以稍微梳理一下这些知识。         先说一下蒙特卡洛法。在书上看到这是动目标跟踪的一种性能检测算法,考虑这样一个问题:投3个...

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程   (1)条件概率公式         设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional ...

全概率公式、贝叶斯公式推导过程

(1)条件概率公式         设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:               ...

理解全概率公式与贝叶斯公式

在概率论与数理统计中,有两个相当重要的公式——全概率公式与贝叶斯公式。然而很多人对这两个公式感到非常迷茫。一来不知道公式背后的意义所在,二来不知道这些冰冷的公式能有什么现实应用。...
  • luc9910
  • luc9910
  • 2017年01月12日 14:24
  • 6671
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:浅谈全概率公式和贝叶斯公式
举报原因:
原因补充:

(最多只允许输入30个字)