LeetCode问题 pow(x,n)

转载 2015年11月21日 14:39:04

转载地址:http://blog.csdn.net/fengbingyang/article/details/12236121

实现浮点类型的幂运算,函数原型为:

double pow(double x, int n)

下面介绍一下解决该问题的几种方法以及要注意的地方:

1)最直观容易想到的方法就是用递归方法求n个x的乘积,注意考虑n的正负号,时间复杂度为O(n)

  1. double pow(double x, int n)  
  2. {  
  3.     if(n==0)  
  4.         return 1.0;  
  5.     if(n<0)  
  6.         return 1.0/pow(x,-n);  
  7.     return x*pow(x,n-1);  
  8. }  

2)考虑到n个x相乘式子的对称关系,可以对上述方法进行改进,从而得到一种时间复杂度为O(logn)的方法,递归关系可以表示为pow(x,n) = pow(x,n/2)*pow(x,n-n/2)

  1. double pow(double x, int n)  
  2. {  
  3.     if(n==0)  
  4.         return 1.0;  
  5.     if(n<0)  
  6.         return 1.0/pow(x,-n);  
  7.     double half = pow(x,n>>1);  
  8.     if(n%2==0)  
  9.         return half*half;  
  10.     else  
  11.         return half*half*x;  
  12. }  

3)除了上述方法,这里还提到了一种十分巧妙并且快速的方法,原文描述如下:

Consider the binary representation of n. For example, if it is "10001011", then x^n = x^(1+2+8+128) = x^1 * x^2 * x^8 * x^128. Thus, we don't want to loop n times to calculate x^n. To speed up, we loop through each bit, if the i-th bit is 1, then we add x^(1 << i) to the result. Since (1 << i) is a power of 2, x^(1<<(i+1)) = square(x^(1<<i)). The loop executes for a maximum of log(n) times.

该方法通过扫描n的二进制表示形式里不同位置上的1,来计算x的幂次

  1. double my_pow(double x, int n)  
  2. {  
  3.     if(n==0)  
  4.             return 1.0;  
  5.     if(n<0)  
  6.         return 1.0 / pow(x,-n);  
  7.     double ans = 1.0 ;  
  8.     for(; n>0; x *= x, n>>=1)  
  9.     {  
  10.         if(n&1>0)  
  11.             ans *= x;  
  12.     }  
  13.     return ans;  
  14. }  

为了正确计算x的n次幂,还需要考虑到以下一些情况:

1) x取值为0时,0的正数次幂是1,而负数次幂是没有意义的;判断x是否等于0不能直接用“==”。

2) 对于n取值INT_MIN时,-n并不是INT_MAX,这时需要格外小心。

3) 尽量使用移位运算来代替除法运算,加快算法执行的速度。

最后附上自己在LeetCode上Accepted的代码:

  1. class Solution {  
  2. public:  
  3.     double pow(double x, int n) {  
  4.         // Start typing your C/C++ solution below  
  5.         // DO NOT write int main() function  
  6.         if(n<0)  
  7.         {  
  8.             if(n==INT_MIN)  
  9.                 return 1.0 / (pow(x,INT_MAX)*x);  
  10.             else  
  11.                 return 1.0 / pow(x,-n);  
  12.         }  
  13.         if(n==0)  
  14.             return 1.0;  
  15.         double ans = 1.0 ;  
  16.         for(;n>0; x *= x, n>>=1)  
  17.         {  
  18.             if(n&1>0)  
  19.                 ans *= x;  
  20.         }  
  21.         return ans;  
  22.     }  
  23. };  




LeetCode问题 pow(x,n)

实现浮点类型的幂运算,函数原型为: double pow(double x, int n) 下面介绍一下解决该问题的几种方法以及要注意的地方: 1)最直观容易想到的方法就是用递归方法求n个x的乘积,注...
  • fengbingyang
  • fengbingyang
  • 2013年10月02日 15:44
  • 13739

50. Pow(x,n) Leetcode Python

Implement pow(x, n). 这题可以用recursive 和iterate 的解法。 解的时候要注意负数。 首先是 recursive的解: class Solution: ...
  • hyperbolechi
  • hyperbolechi
  • 2015年02月04日 00:19
  • 1382

[LeetCode-50] Pow(x, n)(数值的整数次方)

Implement pow(x, n). Subscribe to see which companies asked this question 【方法一】: 1)最直观容易想到的方法就是用递...
  • xy010902100449
  • xy010902100449
  • 2015年10月29日 20:19
  • 2653

LeetCode | Pow(x, n)

题目: Implement pow(x, n). 思路: 最简单的办法是根据n进行循环并计算乘积,但是这样的时间开销比较大。最好能够再减少循环次数,例如n4可以表示成(n2)2。将n表示成二进制的格...
  • lanxu_yy
  • lanxu_yy
  • 2013年09月14日 16:25
  • 4288

LeetCode(50) Pow(x,n)

题目Implement pow(x, n).Show Tags Show Similar Problems分析一个不利用标准幂次函数的,求幂算法实现。参考了一个很好的解析博客:Pow(x,n)问题详...
  • fly_yr
  • fly_yr
  • 2015年09月01日 20:57
  • 2324

(Java)LeetCode-50. Pow(x, n)

Implement pow(x, n). 这道题最慢时间复杂度也是O(n),快一些的是O(logn),主要是将n考虑为二进制的形式,某一位是1的话,就乘上相应的次方数即可。代码如下: ...
  • u012848330
  • u012848330
  • 2016年10月01日 17:44
  • 253

LeetCode 50 — Pow(x, n)(C++ Java Python)

题目:http://oj.leetcode.com/problems/powx-n/ Implement pow(x, n). 题目翻译:         实现pow(x, n)。 分析:      ...
  • dragon_dream
  • dragon_dream
  • 2014年03月21日 11:04
  • 2882

[leetcode] 【分治法】 50. Pow(x, n)

Implement pow(x, n). 题意 实现幂函数。 题解 使用分治法求解。 分:将n分成n/2  直到n=0时,返回1; 治:对n为偶数,返回两数相乘的结果,奇数再乘多一个x...
  • u014654002
  • u014654002
  • 2016年06月21日 00:37
  • 381

【leetcode 分治法】Pow(x, n)与Sqrt(x)函数的实现

int类型范围 -2147483648~2147483647 当n=-2147483648,则-n=2147483648超出2147483647,结果仍然是-2147483648,所以应该单独处理。 ...
  • u012162613
  • u012162613
  • 2014年11月21日 22:14
  • 2164

leetcode 50. Pow(x, n)-细说边界问题

原题链接:50. Pow(x, n) 【思路-Java】递归实现 采用递归实现,那么本题的终止条件是 n == 0 和 n == 1。这里不采用下面的做法: public class Solution...
  • happyaaaaaaaaaaa
  • happyaaaaaaaaaaa
  • 2016年06月13日 11:26
  • 2478
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LeetCode问题 pow(x,n)
举报原因:
原因补充:

(最多只允许输入30个字)