bzoj 2732 射箭 【抛物线】 【线性规划】 【半平面交】

原创 2015年11月20日 23:04:08

从原点射出的抛物线方程y=ax^2+bx 注意没有c,开始绕了很久。

于是乎可以得出一些线性规划方程 y1<=(>=)x1^2a+x1b 其中ab为要求的量。

所以二分,用半平面交判定交是否为空。

1、半平面交是否为空R-L>1; 及如果有两个及以上向量,不为空

2、加4个边框注意方向,而且注意让交点在框内,而不是保证大于系数就行

3、题目很坑,要longdouble 而且加上fcmp就错了。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>

#define ll long long
#define inf 1e15
//#define eps 1e-15
#define double long double
#define md
#define N 500010
using namespace std;
struct point { double x,y;};
struct line
{
	point a,b;
	double slop;
	int id;
	void init(double x1,double y1,double x2,double y2,int pos)
	{
		a=(point){x1,y1}; b=(point){x2,y2};
		slop=atan2(y2-y1,x2-x1);
		id=pos;
	}
}l[N],L[N],q[N];
int W=0;
point operator - (point a,point b) { return (point) {a.x-b.x,a.y-b.y};}
double operator * (point a,point b) { return a.x*b.y-a.y*b.x;}
double cmp(line a,line b) { return a.slop==b.slop?(a.b-a.a)*(b.a-a.a)>0:a.slop<b.slop;}
point inter(line a,line b)
{
	double k1,k2,t;
	k1=(b.b-a.a)*(a.b-a.a);
	k2=(a.b-a.a)*(b.a-a.a);
	t=k1/(k1+k2);
	point ans;
	ans.x=b.b.x+(b.a.x-b.b.x)*t;
	ans.y=b.b.y+(b.a.y-b.b.y)*t;
	return ans;
}

bool jud(line a,line b,line c)
{
	point p=inter(a,b);
	return (p-c.a)*(c.b-c.a)>0;
}
	
bool ok(int mid)
{
	int cnt=1;
	l[1]=L[1];
	for (int i=2;i<=W;i++)
	{
		if (L[i].id>mid) continue;
		if (L[i].slop!=L[i-1].slop) cnt++;
		l[cnt]=L[i];
	}
	//printf("mid %d\n",mid);
	//for (int i=1;i<=cnt;i++) printf("%d %lf %lf %lf %lf %d\n",i,l[i].a.x,l[i].a.y,l[i].b.x,l[i].b.y,l[i].id);
	
	int L=1,R=2;
	q[1]=l[1]; q[2]=l[2];
	for (int i=3;i<=cnt;i++)
	{
		while (L<R&&jud(q[R-1],q[R],l[i])) R--;
		while (L<R&&jud(q[L+1],q[L],l[i])) L++;
		q[++R]=l[i];
	}
	while (L<R&&jud(q[R-1],q[R],q[L])) R--;
	while (L<R&&jud(q[L+1],q[L],q[R])) L++;
	return R-L>1;
}
int main()
{
#ifndef ONLINE_JUDGE
	freopen("data.in","r",stdin); freopen("data.out","w",stdout);
#endif
	int totn; 
	scanf("%d",&totn);
	L[++W].init(-inf,-inf,inf,-inf,0); L[++W].init(inf,-inf,inf,inf,0);
	L[++W].init(inf,inf,-inf,inf,0); L[++W].init(-inf,inf,-inf,-inf,0);
	for (int i=1;i<=totn;i++)
	{
		int an,bn,cn;
		double x,y1,y2;
		scanf("%d%d%d",&an,&bn,&cn);
		x=an; y1=bn; y2=cn;
		double a=-x,b=y2/x;
		L[++W].init(1,a+b,0,b,i);
		b=y1/x;
		L[++W].init(0,b,1,a+b,i);
	}
	sort(L+1,L+W+1,cmp);
	int l=0,r=totn;
	//printf("%d\n",ok(1));
	while (l!=r)
	{
		int mid=(l+r+1)>>1;
		if (ok(mid)) l=mid; else r=mid-1;
	}
	printf("%d\n",l);
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[BZOJ2732][HNOI2012]射箭(二分+半平面交)

明天ATP就是一个在车上颓废的人辣!(这句话是不是NOIP之前也发过= =)

bzoj2732: [HNOI2012]射箭(半平面交)

Description 沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴。沫沫控制一个...

BZOJ 2732 HNOI 2012 射箭 半平面交

题意构造一个二次函数使其能依次穿过更多的竖向线段。题解题目要求最大化 kk,我们可以转化为判定性问题。 发现对于一个线段 [(x,y1),(x,y2)][(x, y_1), (x, y_2)],二次...

BZOJ 2732 HNOI 2012 射箭 半平面交

题目大意:给出一些与x轴垂直的线段,问一个经过原点的抛物线最多能按顺序经过多少条线段。 思路:总体上来说是数学题,我们来推一推。 设这个经过原点的抛物线为y = a * x ^ 2 + b...

BZOJ 2732 [HNOI2012]射箭

半平面交

BZOJ 2732: [HNOI2012]射箭 题解

花了很长时间终于AC,此题细节超多,写题有风险,入坑需谨慎……

BZOJ2732: [HNOI2012]射箭

二分 + 半平面交

bzoj2732【HNOI2012】射箭

二分答案+半平面交

【HNOI2012】【BZOJ2732】射箭

Description沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴。沫沫控制一个位于(0...

poj2540Hotter Colder【半平面交求线性规划面积】

Language: Default Hotter Colder Time Limit: 1000MS   Memory Limit: 65536K Total ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)