nohup-真正的Shell后台运行

&方式:Unix/Linux下一般想让某个程序在后台运行,很多都是使用 & 在程序结尾来让程序自动运行。比如我们要运行mysql在后台:         /usr/local/mysql/bin/mysqld_safe --user=mysql &nohup方式: 但是我们很多程序并不象mysqld一样可以做成守护进程,可能我们的程序只是普通程序而已,一般这种程序即使使用 & 结尾,如果终端关闭,...
阅读(92) 评论(0)

GAN: Generative Adversarial Nets

谈到生成对抗网络,我们首先想到的是Goodfellow的开山之作:Generative Adversarial Nets。今天,我们就来谈谈这篇文章。针对一个估计数据分布的问题,当模型的类别已知,我们一般采用极大似然方法进行估计。然而,当模型的类别未知或数据分布过于莫杂时,我们如何近似得到数据的俄分布呢?我想,对抗网络的提出给了我们一些思路。生成对抗网络,由两个网络组成,即生成器和判别器,在Goo...
阅读(1009) 评论(1)

查看TensorFlow checkpoint文件中的变量名和对应值

转自:http://stackoverflow.com/questions/38218174/how-can-find-the-variable-names-that-saved-in-tensorflow-checkpoint/38226516#38226516from tensorflow.python import pywrap_tensorflow checkpoint_path = os...
阅读(1445) 评论(0)

解读Batch Normalization

原文转自:http://blog.csdn.net/shuzfan/article/details/50723877本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,是一篇很好的paper...
阅读(224) 评论(0)

浅析深度学习中优化方法

目前而言,深度学习是机器学习的发展前沿,一般针对大数据量的学习目标。其优化方法来源于基本的机器学习的优化方法,但也有所不同。下面,小结一下,其基础是随机梯度下降的方法,但是为了学习的自适应性,做了如下改进:1. 因为每次训练的数据不一样,可能导致目标函数的梯度变化剧烈,为了解决这个问题,联合上次迭代的梯度和当前梯度,使梯度变化变缓(指数衰减);2. 在学习过程中,当迭代结果接近最优值时,我们需要学...
阅读(846) 评论(0)

Ubuntu命令行启动Matlab

原文转自:http://blog.csdn.net/striker_v/article/details/52884485小编安装的是Matlab R2015b,使用的是默认安装目录,安装在目录/usr/local/MATLAB/R2015b/bin中。那么安装完成之后系统不会给Matlab添加系统路径,只有把终端切换到安装目录/usr/local/MATLAB/R2015b/bin下才能输入命令’...
阅读(496) 评论(0)

ubuntu16.04下安装opencv

source url:http://blog.csdn.net/zhuiqiuk/article/details/5308505811 1 依赖包sudo apt-get install build-essential libgtk2.0-dev libjpeg-dev libtiff4-dev libjasper-dev libopenexr-dev cmake python-dev pytho...
阅读(505) 评论(0)

Matlab—regexp正则表达式

原文转自:http://blog.csdn.net/yf210yf/article/details/42421523关于正则表达式的基本知识正则表达式就是一个表达式(也是一串字符),它定义了某种字符串模式。利用正则表达式,可以对大段的文字进行复杂的查找、替换等。matlab提供的正则表达式函数有三个:regexp——用于对字符串进行查找,大小写敏感;regexpi——用于对字符串进行查找,大小写不...
阅读(305) 评论(0)

浅析无约束优化的方法

在讨论函数的极值问题时,我们一般使用二次正定函数来推导。为什么只是二次呢?这里引用吴福朝老师的话说:“光滑函数或二阶可微函数,在极值点的局部范围内,在相差高阶无穷小的情况下,都可以表示为二次函数,极值是局部性质,这就理所当然地,用局部二次taylor展开来讨论函数的极值了。”说得很精妙!吴老师是我们实验室神级别的人物,但是很低调!http://vision.ia.ac.cn/Faculty/ind...
阅读(684) 评论(0)

浅析机器学习中的一维直线搜索

针对一个机器学习的优化问题,假设我们使用梯度下降的方法求解最优点。一般地,在初始点和可行下降方向确定后,我们要沿着可行下降方向确定步长(或学习率),这个时候,就要使用到一维搜索的方法。一维搜索的方法分为精确搜索的方法和非精确的搜索方法。非精确的搜索方法即确定一个沿可行下降方向上的步长,使目标函数下降即可;而精确的搜索方法求解出最优的步长,通过公式推导,由最优步长得到的新点的梯度与搜索方向正交,如下...
阅读(734) 评论(0)

浅析深度学习mini_batch的BP反传算法

在深度学习中,如果我们已经定义了网络,输入,以及输出,那么接下来就是损失函数,优化策略,以及一般由框架完成的BP反传。这篇博文我们主要探讨一下深度的BP反传算法(以梯度下降为例),尤其是mini_batch的BP反传,目标是如何更新网络的参数:权重和偏置。        首先,我们来看网络中基本参数的一些定义。        使用梯度下降法,一般计算所有样本的损失函数的...
阅读(1505) 评论(0)

正则化方法:L1和L2 regularization、数据集扩增、dropout

原文转自:http://blog.csdn.net/u012162613/article/details/44261657 本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法。(本文会不断补充) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraini...
阅读(1653) 评论(0)

学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)

视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等)。当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优。目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特...
阅读(10808) 评论(14)

TensoFlow实现条件语句

import tensorflow as tf a = tf.constant(20) b = tf.constant(10) result1 = tf.cond(a > b, lambda: a, lambda: b) result2 = tf.cond(a < b, lambda: a, lambda: b) # Initialize all the variables (includi...
阅读(2416) 评论(1)

浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention

今天作了一个paper reading,感觉论文不错,马克一下~ CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Relaxation of Nonconvex Energies" 研究视觉问题的同学都知道,视觉问题很多都是多标签的问题,在进行优化的时候,我们都可以把他们转化为能量函数的形式,由数据项和平滑项组成。这些能量...
阅读(538) 评论(0)
105条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:310883次
    • 积分:3544
    • 等级:
    • 排名:第9294名
    • 原创:74篇
    • 转载:31篇
    • 译文:0篇
    • 评论:107条
    博客专栏
    最新评论