SpringMvc一个简单的框架入门程序

1. springmvc框架




2.前端控制器配置

 在web.xml中进行配置,配置示例如下:
</pre><span style="font-size:14px;"><span style="color: rgb(42, 21, 171);">在web.xml</span>中进行配置,配置示例如下:</span><pre name="code" class="html"><span style="font-size:18px;"><!-- springmvc前端控制器 -->
  <servlet>
    <servlet-name>springmvc</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
    <!-- 
     contextConfigLocation配置springmvc加载的配置文件
            如果不配置contextConfigLocation,默认加载的是/WEB-INF/servlet名称-servlet.xml
     -->
     <init-param>
    <param-name>contextConfigLocation</param-name> <param-value>classpath:springmvc.xml</param-value>
     </init-param>
  </servlet>
  <servlet-mapping>
    <servlet-name>springmvc</servlet-name>
    <url-pattern>*.action</url-pattern>
  </servlet-mapping></span>

3.Spring的配置文件

   其映射器、适配器、视图解析器配置如下:SpingMvc.xml配置

<span style="font-size:14px;"><?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"  
xmlns:mvc="http://www.springframework.org/schema/mvc"  
xsi:schemaLocation="http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd 
    http://www.springframework.org/schema/tx 
http://www.springframework.org/schema/tx/spring-tx-3.2.xsd
    http://www.springframework.org/schema/aop  http://www.springframework.org/schema/aop/spring-aop-3.2.xsd
   http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.2.xsd
    http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.2.xsd">
    <!-- 配置Handler -->
    <bean name="/queryItems.action" class="com.liheng.ssm.controller.ItemsController1"></bean>
    <!-- 配置映射器
    将bean的name作为url进行查找,需要在配置Handler时指定beanname(就是url)
     -->
    <bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping"></bean>
    <!-- 配置适配器 ,所有的适配器都继承了HandlerAdapter接口-->
    <bean class="org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter" />
    <!-- 配置视图解析器 
      解析jsp,默认使用jstl标签,classpath下的得有jstl的包
    -->
     <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver" />
</beans></span>

4.简单的Hander Controller示例如下

简单的测试用例

 

public class ItemsController1 implements Controller{

	public ModelAndView handleRequest(HttpServletRequest request,
			HttpServletResponse response) throws Exception {
		// TODO Auto-generated method stub
		//调用service查找数据库,查询商品列表,这里使用静态数据模拟
		List<Items> listItems=  new ArrayList<Items>();
		//向list中填充静态数据
		Items item1 = new Items();
		item1.setName("联想笔记本");
		item1.setPrice(2500);
		item1.setDetail("i7处理器");
		listItems.add(item1);
		//返回modeAndView
		ModelAndView modeAndView = new ModelAndView();
		//相当于request的setAttribut,在jsp页面中通过itemsList取数据
	modeAndView.addObject("itemsList",listItems);
		//指定视图
	modeAndView.setViewName("/WEB-INF/items/showItems.jsp");
		return modeAndView;
	}
}
一个简单的SpringMvc的入门程序示例,一个简单的框架搭建

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值