关闭

抢红包的红包生成算法

标签: 算法Java
44227人阅读 评论(15) 收藏 举报
分类:

过年微信红包很火,最近有个项目也要做抢红包,于是写了个红包的生成算法。


红包生成算法的需求

预先生成所有的红包还是一个请求随机生成一个红包

简单来说,就是把一个大整数m分解(直接以“分为单位,如1元即100)分解成n个小整数的过程,小整数的范围是[min, max]。

最简单的思路,先保底,每个小红包保证有min,然后每个请求都随机生成一个0到(max-min)范围的整数,再加上min就是红包的钱数。

这个算法虽然简单,但是有一个弊端:最后生成的红包可能都是min钱数的。也就是说可能最后的红包都是0.01元的。


另一种方式是预先生成所有红包,这样就比较容易控制了。我选择的是预先生成所有的红包。

理想的红包生成算法

理想的红包生成结果是平均值附近的红包比较多,大红包和小红包的数量比较少。

可以想像下,生成红包的数量的分布有点像正态分布


那么如何实现这种平均线附近值比较多的要求呢?

就是要找到一种算法,可以提高平均值附近的概率。那么利用一种”膨胀“再”收缩“的方式来达到这种效果。

先平方,再生成平方范围内的随机数,再开方,那么概率就不再是平均的了。

具体算法:

public class HongBaoAlgorithm {
	static Random random = new Random();
	static {
		random.setSeed(System.currentTimeMillis());
	}
	
	public static void main(String[] args) {
		long max = 200;
		long min = 1;

		long[] result = HongBaoAlgorithm.generate(100_0000, 10_000, max, min);
		long total = 0;
		for (int i = 0; i < result.length; i++) {
			// System.out.println("result[" + i + "]:" + result[i]);
			// System.out.println(result[i]);
			total += result[i];
		}
		//检查生成的红包的总额是否正确
		System.out.println("total:" + total);

		//统计每个钱数的红包数量,检查是否接近正态分布
		int count[] = new int[(int) max + 1];
		for (int i = 0; i < result.length; i++) {
			count[(int) result[i]] += 1;
		}

		for (int i = 0; i < count.length; i++) {
			System.out.println("" + i + "  " + count[i]);
		}
	}
	
	/**
	 * 生产min和max之间的随机数,但是概率不是平均的,从min到max方向概率逐渐加大。
	 * 先平方,然后产生一个平方值范围内的随机数,再开方,这样就产生了一种“膨胀”再“收缩”的效果。
	 * 
	 * @param min
	 * @param max
	 * @return
	 */
	static long xRandom(long min, long max) {
		return sqrt(nextLong(sqr(max - min)));
	}

	/**
	 * 
	 * @param total
	 *            红包总额
	 * @param count
	 *            红包个数
	 * @param max
	 *            每个小红包的最大额
	 * @param min
	 *            每个小红包的最小额
	 * @return 存放生成的每个小红包的值的数组
	 */
	public static long[] generate(long total, int count, long max, long min) {
		long[] result = new long[count];

		long average = total / count;

		long a = average - min;
		long b = max - min;

		//
		//这样的随机数的概率实际改变了,产生大数的可能性要比产生小数的概率要小。
		//这样就实现了大部分红包的值在平均数附近。大红包和小红包比较少。
		long range1 = sqr(average - min);
		long range2 = sqr(max - average);

		for (int i = 0; i < result.length; i++) {
			//因为小红包的数量通常是要比大红包的数量要多的,因为这里的概率要调换过来。
			//当随机数>平均值,则产生小红包
			//当随机数<平均值,则产生大红包
			if (nextLong(min, max) > average) {
				// 在平均线上减钱
//				long temp = min + sqrt(nextLong(range1));
				long temp = min + xRandom(min, average);
				result[i] = temp;
				total -= temp;
			} else {
				// 在平均线上加钱
//				long temp = max - sqrt(nextLong(range2));
				long temp = max - xRandom(average, max);
				result[i] = temp;
				total -= temp;
			}
		}
		// 如果还有余钱,则尝试加到小红包里,如果加不进去,则尝试下一个。
		while (total > 0) {
			for (int i = 0; i < result.length; i++) {
				if (total > 0 && result[i] < max) {
					result[i]++;
					total--;
				}
			}
		}
		// 如果钱是负数了,还得从已生成的小红包中抽取回来
		while (total < 0) {
			for (int i = 0; i < result.length; i++) {
				if (total < 0 && result[i] > min) {
					result[i]--;
					total++;
				}
			}
		}
		return result;
	}

	static long sqrt(long n) {
		// 改进为查表?
		return (long) Math.sqrt(n);
	}

	static long sqr(long n) {
		// 查表快,还是直接算快?
		return n * n;
	}
	
	static long nextLong(long n) {
		return random.nextInt((int) n);
	}

	static long nextLong(long min, long max) {
		return random.nextInt((int) (max - min + 1)) + min;
	}
}

统计了下生成的结果,还是比较符合要求的。




11
2

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1583336次
    • 积分:11427
    • 等级:
    • 排名:第1414名
    • 原创:129篇
    • 转载:29篇
    • 译文:2篇
    • 评论:342条
    博客专栏
    文章分类
    最新评论