Uva11300 - Spreading the Wealth

原创 2015年11月19日 21:36:40

题目地址:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2275


题目大意:n个人围成一个圆,每个人有一定的金币数量,然后每个人与左右两边的人交换硬币,这里注意,每个人只能和左右两边的人交换硬币,然后经过一些交换,最终使得每个人的金币数量相同。


这道题初看觉得很复杂,想到的方法也很复杂,后来看了书上的解析,发现有非常好处理的方法。

首先算出最终每个人持有的金币数量,就是金币总数/人数n=M;

然后开始分析,设每个人初始拥有的金币数量是A[i];

这里设每个人按照逆时针方向给旁边的人金币,例1号给n号x1个金币,x1>0,说明是1号给了n号x1个金币,若<0,说明是n号给了1号-x1个金币,以此类推,

2号给了1号x2个金币,3号给了2号x3个金币,4号给了3号x4个金币。。。n号给了n-1号xn个金币;

因此经过交换,1号最后的金币数量就是A[1]-x1+x2=M;x2=x1+M-A[1]=x1-(A[1]-M)=x1-C1,令A[1]-M=C1;

2号是A[2]-x2+x3=M;x3=x2+M-A[2]=(x1+M-A[1])+M-A[2]=x1+2M-A[1]-A[2]=x1-(A[1]+A[2]-2M)=x1-C2;C2=A[1]+A[2]-2M=C1+A[2]-M;

以此类推,3号就是A[3]-x3+x4=M;即x4=x1-C3;C3=C2+A[3]-M;

。。。

对第n-1个人,就是A[n-1]-X(n-1)+Xn=M;即Xn=x1-Cn-1;

 对第n个人,A[n]-Xn+X1=M;这个式子对于运算没有意义。


根据题意,求的就是|X1|+|X2|+...+|Xn|的最小值,即|X1|+|X1-C1|+|X1-C2|+......+|X1-C(n-1)|的最小值;


而在几何意义上看,将C1,C2。。。Cn-1看作数轴上分布的一些点,那么|x1-Ci|就是求点x1到Ci的距离;

而|X1|+|X1-C1|+|X1-C2|+......+|X1-C(n-1)|就转换成了:给定数轴上n个点,找一个到他们距离之和最小的点;

而这个点,就是中位数;

所以这道题的算法就是,求出C1,C2...Cn之后,将它们重新排序,然后找出中位数;

找这个中位数与n的奇偶无关,直接找到C(n/2)就是找到了x1;因为当n为奇数时,中间那个数就是中位数这没问题;

而当n为偶数的时候,x1可以在这个数列中间两个数之间任意一个地方,因为当这个数偏向左边的时候,他到左边的距离减少了,但是到右边的距离又增加了;偏向右边同理。

所以x1就是C(n/2);


然后算出x1到每个点的绝对值相加,就是最终答案了。


这个题目我按照这个思路写完了代码自己测试的都没有问题,但是得到的总是WA,然后发现了一个问题;

这个问题和算法思路无关,和输入输出有关,这道题要求输入的值保证在64位无符号整数范围内;

所以我用的变量格式是long long ,到这里都没有什么问题,问题就在scanf和printf的格式上!!我刚开始用的是%I64d,一直都AC不了,然后折腾了好久之后。。。用了%lld就可以AC了......


代码如下:


#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define maxn 1000200
long long a[maxn],c[maxn];
int cmp(const void*a,const void*b)
{
	return *(int*)a-*(int*)b;
}
int main(int argc, char *argv[]) 
{
	long long sum,mid,x1,y;
	int n,i;
	while(scanf("%d",&n)!=-1)
	{
		sum=0;
		for(i=1;i<=n;i++)
		{
			scanf("%lld",&a[i]);
			sum+=a[i];
		}
		mid=sum/n;
		c[0]=0;
		for(i=1;i<n;i++)
		{
			c[i]=c[i-1]+a[i]-mid;
		}
		qsort(c,n,sizeof(c[0]),cmp);
		x1=c[n/2];
		y=0;
		for(i=0;i<n;i++)
		{
			y+=abs(x1-c[i]);
		}
		printf("%lld\n",y);
	}
	return 0;
}


等我  鞍啊大叔点


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

uva 11300 Spreading the wealth

题目链接:点击打开链接 题目大意:圆桌旁坐着n个人,每个人有一定数量的金币,金币总数能被n整除.每个人需要给相邻的人一些金币,使得最后每个人手中的金币数目一样.你需要求出转手金币数量的最小值. ...

【uva 11300】 Spreading the Wealth

题意 环形排列的n(n≤106)n(n\le 10^6)个人,每人有一定量的金币。每个人可以给左右相邻的两个人金币,最终使得每个人都有相同量的金币。求被转手的最小金币数。 思路 贪心的经典题。 ...

UVa - 11300 - Spreading the Wealth ( 数学推导 )

题目大意: n和村庄各自有自己的金币,相邻村庄可以互相给金币。为了实现共产主义,现在要实现每个村庄的金币数量都相同。求出最小的金币转移量。 题目思路: 1.设 a[ i ] 表示第 ...

UVA 11300-Spreading the Wealth(中位数)

F. Spreading the Wealth  Problem A Communist regime is trying to redistribute wealth i...

UVA之11300 - Spreading the Wealth

F. Spreading the Wealth  Problem A Communist regime is trying to redistribute wealth...

uva 11300 Spreading the Wealth (中位数的应用)

uva 11300 Spreading the Wealth  Problem A Communist regime is trying to redistribute wealth in...

UVA_11300Spreading the Wealth

这道题目看起来很复杂,看了题目分析之后表示zhe

UVA11300:Spreading the Wealth

代数推导 题意:将所有人的硬币进行一次平均分配,这里要注意的是,每个人只能和左右相邻的人交换硬币,而且这些人组成的是一个环解法:首先求出平均数为M每个人初始的硬币为Ai那么对于1,他能给予4号x1个...

Spreading the Wealth UVa-11300

题目传送门题意:这个题题目的意思十分的简单,就是有n个人围成一圈坐下,每个人一开始都有一定数量的金币,每个人的金币只能给自己身边的两个人,问最少要交换多少次金币才能让每一个人手中的金币数量相等。思路:...

Uva 11300 Spreading the Wealth(数学,中位数)

F. Spreading the Wealth  Problem A Communist regime is trying to redistribute wealth i...
  • kbdwo
  • kbdwo
  • 2014-07-13 11:25
  • 568
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)