关闭

【机器学习】对于特征离散化,特征交叉,连续特征离散化非常经典的解释

一.互联网广告特征工程 博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训练方法本身,对效果的影响却不是决定性的,因为训练的是每个特征的权重,权重细微的差别不会引起ctr的巨大变化。 在训练方法确定后,对ctr预估起到决...
阅读(134) 评论(0)

【机器学习】特征工程七种常用方法

当在做数据挖掘和数据分析时,数据是所有问题的基础,并且会影响整个工程的流程。相比一些复杂的算法,如何灵活的处理好数据经常会取到意想不到的效益。而处理数据不可或缺的需要使用到特征工程。原文链接 0 什么是特征工程 简单的说,特征工程是能够将数据像艺术一样展现的技术。为什么这么说呢?因为好的特征工程很好的混合了专业领域知识、直觉和基本的数学能力。但是最有效的数据呈现其实并不涉及任何...
阅读(89) 评论(0)

【基础】PDB小结

调试,在第一行断点。推荐用这种方式而非在代码中用pdb.set_trace()来断点。因为这样所有的断点都可以删除,在调试时很方便。 python -m pdb mysqcript.py >断点设置 b 10 #断点设置在本py的第10行 b ots.py:20 #断点设置到 ots.py第20行 删除断点   b #查看断点编号                  cl 2 #...
阅读(136) 评论(0)

【神经网络】MCCN(Multi-task Cascaded Convolutional Networks )人脸识别与特征点检测论文解析

在使用faceNet的时候,看到faceNet官方使用的人脸识别和归一化方法是MCCN(Multi-task Cascaded Convolutional Networks ),看代码貌似是使用三个网络来共同完成人脸识别与面部特征点确定这个多目标工作。就顺便看了一下论文《Joint Face Detection and Alignment usingMulti-task Cascaded Co...
阅读(201) 评论(0)

“No Module Named Tkinter”解决

CentOS7安装RCNN的时候遇到的问题。 这东西还不好安装,没什么便捷方法: 1. 到官网下载tcl和tk  http://www.tcl.tk/software/tcltk/download.html 2. 安装: cd ~/tcl8.5.11/unix ./configure --prefix=/home/cnel711 --exec-prefix=/home/cnel711 ...
阅读(288) 评论(0)

CentOs7下,Caffe环境安装问题解决

准备在CentOS 7 下重新安装Caffe,centos7很不错,基本上官方文档里的: sudo yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel sudo yum install gflags-devel glog-devel lmdb-devel 可以顺...
阅读(604) 评论(0)

【图像】目标检测现有算法对比与资料收集

Jump to... LeaderboardPapers R-CNNMultiBoxSPP-NetDeepID-NetNoCFast R-CNNDeepBoxMR-CNNFaster R-CNNYOLOAttentionNetDenseBoxSSDInside-Outside Net (ION)G-CNNHyperNetMultiPathNetCRAFTOHEMR-FCNMS-CN...
阅读(2033) 评论(1)

【TensorFlow】Caffe模型转tensorflow模型并使用模型进行预测

做了一个Caffe模型转tensorflow的实验,把ResNet模型和prototxt转为tensorflow模型和tensorflow代码,挺有意思的。 主要参考: https://my.oschina.net/yilian/blog/672135 这个开源软件提供了caffe转tensorflow的功能: https://github.com/ethereon/caf...
阅读(3284) 评论(0)

【环境】Caffe安装 'unique_path' is not a member of 'boost::filesystem' 问题解决

环境 CentOS 6.7 cpu版 参考 https://github.com/BVLC/caffe/issues/3686 有人问了类似的issue,官方回答:你去用docker....底下还是有很多人希望在不用docker的情况解决,但官方没有更多回复。心累 我还真的尝试用docker了,但是问题很多,失败。 最后解决方案:更新boost到最新版本(当前为1.63)...
阅读(711) 评论(1)

【神经网络】神经网络可视化工具

t-SNE  方法:在fc7(倒数第一层fc)提取输出,并用欧氏距离远近展示(或聚类)。好的网络可以直观看到同分类的图片聚在一起,几何上易被切割出来。 http://cs.stanford.edu/people/karpathy/cnnembed/ 一个例子: 4000*4000(3.2M) Visualizing Activations 方法:     1. 逆...
阅读(1054) 评论(0)

【神经网络】VGG、ResNet、GoogleLeNet、AlexNet等常用网络代码及预训练模型

常用数据集: ImageNet   http://www.image-net.org/ Microsoft的COCO  http://mscoco.org/ CIFAR-10和CIFAR-100 https://www.cs.toronto.edu/~kriz/cifar.html PASCAL VOC http://host.robots.ox.ac.uk/pascal/VO...
阅读(1750) 评论(0)

GBDT(MART) 迭代决策树入门教程 | 简介

在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下:                GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(g...
阅读(194) 评论(0)

GBDT(MART) 迭代决策树入门教程 | 简介

在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下:                GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(g...
阅读(192) 评论(0)

[译]CS231n 卷积神经网络对于图像识别的应用--(一)(CS231n Convolutional Neural Networks for Visual Recognition)

卷积神经网络CNNsConvNets 概述 用于构建CNN的层 卷积层卷积神经网络(CNNs/ConvNets)卷积神经网络与上一章的普通神经网络非常相似:它们由具有可学习的权重和偏差的神经元组成。每个神经元接收一些输入,执行点积并且可选地以非线性跟随它。整个网络仍然表示单个可微分的分数函数:从一端的原始图像像素到另一端的各类别得分。 他们在最后一个(完全连接)层上仍然有一个损失函数(例如SVM /...
阅读(893) 评论(0)

【Neo4j】踩坑大会-Neo4J用中文索引

正在用的Neo4j是当前最新版:3.1.0,各种踩坑。说一下如何在Neo4j 3.1.0中使用中文索引。选用了IKAnalyzer做分词器。 1. 首先参考文章: https://segmentfault.com/a/1190000005665612 里面大致讲了用IKAnalyzer做索引的方式。但并不清晰,实际上,这篇文章的背景是用嵌入式Neo4j,即Neo4j一定要嵌入在你...
阅读(842) 评论(1)
188条 共13页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:348083次
    • 积分:4519
    • 等级:
    • 排名:第6803名
    • 原创:91篇
    • 转载:93篇
    • 译文:4篇
    • 评论:90条
    最新评论