动态规划—Problem G

原创 2016年05月30日 21:41:21

动态规划—Problem G
题意
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标。
这里写图片描述
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
解题思路
设a[i][j]为第i秒的j位置掉下的馅饼数量,pie[i][j]为第i秒在j位置接馅饼最多可以接到的最多馅饼数量。由于每秒只能移动一个位置,因此这一状态可能由三种情况达到:
① pie[i - 1][j - 1]
② pie[i - 1][j]
③ pie[i - 1][j + 1]
这三种情况中的最大值加上当前位置可以接到的馅饼数即是当前位置可以接到的最大馅饼数量:
pie [ i ] [ j ] = max ( pie [ i - 1 ] [ j - 1 ] , pie [ i - 1 ] [ j ] , pie [ i - 1 ] [ j + 1 ] ) + a [ i ] [ j ] ;
可以看出,当前状态与之前同一阶段的多个状态有关,而类似于 Ugly Numbers 等动态规划中的每一阶段都只有一个状态,为区分两者,我将它称为 二维动态规划 。当然,这道题只是二维动态规划中最简单的一种罢了。
因此,状态转移为:
pie [ i ] [ j ] = max ( pie [ i - 1 ] [ j - 1 ] , pie [ i - 1 ] [ j ] , pie [ i - 1 ] [ j + 1 ] ) + a [ i ] [ j ] ;
感想
几天前做的,结果一时忘了写博客,补上。
AC代码

#include<iostream>
#include<cstring> 
#include<algorithm> 
using namespace std ; 
int a [ 100001 ] [ 12 ] ; 
int f [ 100001 ] [ 12 ] ; 
int main ( ) 
{ 
    int n ; 
    while ( cin>>n,n ) 
    { 
        memset ( a, 0 , sizeof ( a ) ) ; 
        memset ( f, 0 , sizeof ( f ) ) ; 
        int x, T, i, j, maxT = 0 , ans = 0 ; 
        while ( n -- ) 
        { 
            scanf ( "%d%d" , & x, & T ) ; 
            ++ a [ T ] [ x ] ; 
            maxT = max ( maxT, T ) ; 
        } 
        f [1] [4] = a [1] [4] ; 
        f [1] [5] = a [1] [5] ; 
        f [1] [6] = a [1] [6] ; 
        for ( i = 2 ; i <= maxT ; ++ i ) 
        { 
            for ( j = 0 ; j < 11 ; ++ j ) 
            { 
                f [i] [j] = f [i-1] [j] ; 
                if ( j > 0 ) 
                    f [i] [j] = max ( f[i] [j] , f [i-1] [j-1] ) ; 
                if ( j < 10 ) 
                    f [i] [j] = max ( f [i] [j] , f [i-1] [j+1] ) ; 
                f [i][j] += a [i] [j] ; 
            } 
        } 
        for ( i = 0 ; i < 11 ; ++ i ) 
            ans = max ( ans, f [maxT] [i] ) ; 
        cout<<ans<<endl;
    } 
    return 0 ; 
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

动态规划—机器调度

  • 2013-06-19 19:40
  • 40KB
  • 下载

【动态规划】【最短路径】Problem 3 Cyh和香穗子

话说,Cyh和香穗子是好朋友,一天他们在fzsz迷路了….Cyh在地点1,香穗子在地点n.由于Cyh是土生土长的fzsz人,所以Cyh准备去n地给香穗子带路. fzsz是个奇怪的地方,它由n地点组成...

OpenJudge - 2989 糖果 动态规划(DP) 重庆一中高2018级竞赛班第十一次测试 2016.9.24 Problem 2

【问题描述】 由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的...

hdoj problem 1203 I NEED A OFFER!(动态规划&&背包问题(01背包问题))

I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

DP 动态规划 Problem O 1015 二进制十进制转换

Problem O  ID:1015 简单题意:给出一个1000以内的十进制数,求其二进制形式。 解题思路形成过程:如图所示:             每组的...

DP 动态规划 Problem V 1022 反向考虑的背包

Problem V  ID:1022 简单题意:某人准备抢银行,可以承受的最大被抓的概率为p(总共),共有n个银行可抢,分别给出各个银行所拥有的money:mi,抢各个银行被抓的概率...

BZOJ 2302 HAOI2011 Problem c 动态规划

题目大意:给定nn个人和nn个位置,要求生成一个序列aia_i,然后第1...n1...n个人依次走到第a1...na_{1...n}个位置,如果那个位置已经有人了就走到下一个位置,直到找到一个空位,...

DP 动态规划 Problem W 1023 背包

Problem W  ID:1023 简单题意:共有n万元,有m个学校可申请(0,给出每个学校的申请费用和拿到offer的概率,求至少得到一份offer的最大概率。 ...

【动态规划法】解析经典算法题Two eggs problem及其延伸问题

【动态规划法】解析经典算法题Two eggs problem及其延伸问题Two eggs problem可以说是互联网面试中老生常谈的算法题了,经常可以在各大互联网公司的笔试真题中看到它的各类变种(腾...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)