背景:性能应该是功能的一个重要参考,特别是在大数据的背景之下!写SQL语句时如果仅考虑业务逻辑,而不去考虑语句效率问题,有可能导致严重的效率问题,导致功能不可用或者资源消耗过大。其中的一种情况是,处理每日增量数据的程序,实际执行过程中可能会进行全表扫描,效率与全量程序并无二致。
案例:
mio_log数据量:134,092,418条记录
freph_a01_fromtask3数据量:176,581,388条记录
生产系统上按照业务处理逻辑编写的SQL语句核心代码如下:
SELECT (CASE
WHEN c.in_force_dateISNOT NULL
THEN (CASE
WHEN a.mio_date>=c.in_force_dateTHENa.mio_date
ELSE c.in_force_date
END )
WHEN c.in_force_dateISNULL THEN (CASE
WHEN a.mio_date>=a.plnmio_dateTHENa.mio_date
ELSE a.plnmio_date
END )
ELSE a.mio_date
END ) mio_date
FROM dbo.mio_loga
INNER JOIN dbo.freph_a01_fromtask3c
ON a.cntr_no = c.cntr_no
AND a.pol_code=c.pol_code
WHERE ((c.in_force_dateISNOT NULL
AND((CASE
WHEN a.mio_date>=c.in_force_dateTHENa.mio_date
ELSE c.in_force_date
END ) BETWEEN @stat_begindateAND@stat_enddate))
OR(c.in_force_dateISNULL
AND((CASE
WHEN a.mio_date>=a.plnmio_dateTHENa.mio_date
ELSE a.plnmio_date
END ) BETWEEN @stat_begindateAND@stat_enddate)) )
导致虽然mio_log表的mio_date、plnmio_date字段,以及freph_a01_fromtask3表的in_force_date字段上均有索引,但是由于两表不同字段进行CASE WHEN比较,执行计划为聚集索引扫描:
优化思路:
由于mio_log表的mio_date、plnmio_date字段,以及freph_a01_fromtask3表的in_force_date字段上均有索引,可先通过单个mio_date、in_force_date、plnmio_date索引取出增量时间段数据,在增量数据上进行不同表、字段的比对。
SELECT (CASE
WHEN in_force_date IS NOT NULL
THEN ( CASE
WHEN mio_date >= in_force_dateTHENmio_date
ELSE in_force_date
END )
WHEN in_force_date IS NULL
THEN ( CASE
WHEN mio_date >= plnmio_dateTHENmio_date
ELSE plnmio_date
END )
ELSE mio_date
END ) mio_date
from(
SELECT a.mio_date,
c.in_force_date,
a.plnmio_date,
a.MIO_LOG_ID
FROM dbo.mio_loga
INNER JOIN dbo.freph_a01_fromtask3c
ON a.cntr_no = c.cntr_no
ANDa.pol_code=c.pol_code
WHERE
a.mio_dateBETWEEN@stat_begindateAND@stat_enddate
union
SELECT a.mio_date,
c.in_force_date,
a.plnmio_date,
a.MIO_LOG_ID
FROM dbo.mio_loga
INNER JOIN dbo.freph_a01_fromtask3c
ON a.cntr_no = c.cntr_no
ANDa.pol_code=c.pol_code
WHERE
c.in_force_dateBETWEEN@stat_begindateAND@stat_enddate
union
SELECT a.mio_date,
c.in_force_date,
a.plnmio_date,
a.MIO_LOG_ID
FROM dbo.mio_loga
INNER JOIN dbo.freph_a01_fromtask3c
ON a.cntr_no = c.cntr_no
ANDa.pol_code=c.pol_code
WHERE
a.plnmio_dateBETWEEN@stat_begindateAND@stat_enddate
) T
WHERE ((in_force_dateIS NOT NULL
AND((CASE
WHEN mio_date>= in_force_dateTHENmio_date
ELSE in_force_date
END ) BETWEEN @stat_begindateAND@stat_enddate))
OR(in_force_dateIS NULL
AND((CASE
WHEN mio_date>= plnmio_dateTHENmio_date
ELSE plnmio_date
END ) BETWEEN @stat_begindateAND@stat_enddate)) )
该语句存在两个问题:
1. 如果子查询中mio_log、freph_a01_fromtask3没有主键,则需通过ROWID标识不同记录,即如果没有主键,可以通过ROWID进行替换。
ROWID这个概念在Oracle中非常重要,使用也非常广泛,其意义如下:
ROWIDPseudocolumn
Foreach row in the database, the ROWID pseudocolumn returns the address of therow. Oracle Database rowid values contain information necessary to locate arow:
· The dataobject number of the object
· The datablock in the datafile in which the row resides
· The positionof the row in the data block (first row is 0)
· The datafilein which the row resides (first file is 1). The file number is relative to thetablespace.
SQLServer中并没有ROWID这个概念, SQL Server2008及以后版本中%%physloc%%虚拟列与ROWID最相近,信息如下:
The closest equivalent tothis in SQL Server is the rid
which has three componentsFile:Page:Slot
.
In SQL Server 2008 it ispossible to use the undocumented and unsupported %%physloc%%
virtual column to see this. Thisreturns a binary(8)
value with the Page ID in the firstfour bytes, then 2 bytes for File ID, followed by 2 bytes for the slot locationon the page.
The scalar function sys.fn_PhysLocFormatter
or the sys.fn_PhysLocCracker
TVF can be used to convert this into amore readable form.
CREATE TABLET(XINT);
INSERT INTOTVALUES(1),(2)
SELECT %%physloc%%AS[%%physloc%%],
sys.fn_PhysLocFormatter(%%physloc%%)AS[File:Page:Slot]
FROM T
%%physloc%% | File:Page:Slot |
0x7600000001000000 | (1:118:0) |
0x7600000001000100 | (1:118:1) |
Note that this is not leveraged by the queryprocessor. Whilst it is possible to use this in a WHERE
clause
SELECT *FROMT
WHERE %%physloc%%=0x7600000001000000
SQL Server will not directly seek to thespecified row. Instead it will do a full table scan, evaluate %%physloc%% foreach row and return the one that matches (if any do).
2. 该语句有parameter sniffing问题:
当使用存储过程的时候,总是要使用到一些变量。变量有两种,一种是在存储过程的外面定义的,当调用存储过程的时候,必须要给它代入值,SQLServer在编译时知道它的值是多少。还有一种变量是在存储过程里面定义的。它的值是在存储过程的语句执行过程中得到的。对这种本地变量,SQLServer在编译时不知道它的值是多少。
SQLServer在处理存储过程时,为了节省编译时间,是一次编译多次使用的。那么计划重用就有两个潜在问题:
(1) 对于第一类变量,根据第一次运行时带入的值生成的执行计划,是不是就能够适合所有可能的变量值?
(2) 对于第二类本地变量,SQL Server在编译时并不知道它的值是多少,那怎么选择“合适”的执行计划?
parametersniffing”问题的定义:因为语句的执行计划对变量值很敏感,而导致重用执行计划会遇到性能问题。本地变量做出来的执行计划是一种比较“中庸”的方法,一般不会有parameter sniffing那么严重,很多时候,它还是解决parametersniffing的一个候选方案。
解决parameter sniffing问题的方法:
(1) 用exec()方式运行动态SQL语句:如果在存储过程里不是直接运行语句,而是把语句带上变量,生成一个字符串,再让exec()命令多动态语句运行,那SQL Server就会在运行到这个语句的时候,对动态语句进行编译。这时,SQLServer已经知道了变量的值,会根据值生成优化的执行计划,从而绕过parametersniffing问题。
(2) 使用本地变量:如果把变量值赋给一个本地变量,SQLServer在编译的时候是没有办法知道这个本地变量的值的。所以它会根据表格里数据的一般分布情况“猜测”一个返回值。不管用户在调用存储过程的时候带入的变量值是多少,做出来的执行计划都是一样的。而这样的执行计划一般比较“中庸”,不会是最优的执行计划,但是对大多数变量值来讲,也不会是一个很差的执行计划。该方法的好处是保持了存储过程的优点,缺点是要修改存储过程,而执行计划也不是最优的。
(3) 在语句里使用query hint指定执行计划:
在SELECT、INSERT、UPDATE、DELETE语句最后,可以加一个“Option(<query_hint>)”子句,对SQL Server将要生成的执行计划进行指导。目前的query_hint很强大,有十几种hint。完整的定义如下:
<query_hint>::=
{ {HASH| ORDER } GROUP
| {CONCAT| HASH | MERGE} UNION
| {LOOP| MERGE | HASH} JOIN
| FASTnumber_rows
| FORCEORDER
| MAXDOPnumber_of_processors
| OPTIMIZEFOR( @vaariable_name= literal_constant[ , ...n ])
| PARAMETERIZATION{SIMPLE | FORCED }
| RECOMPILE
| ROBUSTPLAN
| KEEPPLAN
| KEEPFIXEDPLAN
| EXPANDVIEWS
| MAXRECURSIONnumber
| USEPLANN'xml_plan'
}
这些hint的用途不一样。有些是引导执行计划使用什么样的运算的,例如{HASH| ORDER } GROUP、{CONCAT | HASH | MERGE} UNION、{LOOP| MERGE|HASH} JOIN。有些是防止重编译的,例如PARAMETERIZATION{SIMPLE | FORCED }、KEEPPLAN、KEEPFIXEDPLAN,有些是强制重编译的,如RECOMPILE。有些是影响执行计划的选择的,如FASTnumber_rows、FORCEORDER、MAXDOPnumber_of_processors、OPTIMIZEFOR( @vaariable_name= literal_constant[ , ...n ]),它们是和在不同的场合。具体定义参见SQL Server联机帮助。
为避免parameter sniffing问题,主要有以下几种常见query hint
(1)Recompile
Recompile这个查询提示告诉SQL Server,语句在每一次存储过程运行的时候,都要重新编译一下。这样就能够使SQL Server根据当前变量的值,选一个最好的执行计划。对前面的那个例子,我们可以这么改写。
CREATE PROCNosniff_queryhint_recompile(@iINT)
AS
SELECT Count(b.SalesOrderID),
Sum(p.Weight)
FROM dbo.SalesOrderHeader_testa
INNER JOIN dbo.SalesOrderDetail_testb
ON a.SalesOrderID=b.SalesOrderID
INNER JOIN Production.Productp
ON b.ProductID=p.ProductID
WHERE a.SalesOrderID=@i
OPTION (recompile)
go
和这种方法类似的,是在存储过程的定义里直接指定"recompile",也能达到避免parameter sniffing的效果。
CREATE PROCNosniff_spcreate_recompile(@iINT)
WITH recompile
AS
SELECT Count(b.SalesOrderID),
Sum(p.Weight)
FROM dbo.SalesOrderHeader_testa
INNER JOIN dbo.SalesOrderDetail_testb
ON a.SalesOrderID=b.SalesOrderID
INNER JOIN Production.Productp
ON b.ProductID=p.ProductID
WHERE a.SalesOrderID=@i
go
(2) 指定JOIN运算
CREATE PROCNosniff_queryhint_joinhint(@iINT)
AS
SELECT Count(b.SalesOrderID),
Sum(p.Weight)
FROM dbo.SalesOrderHeader_testa
INNER JOIN dbo.SalesOrderDetail_testb
ON a.SalesOrderID=b.SalesOrderID
INNER hash JOIN Production.Productp
ON b.ProductID=p.ProductID
WHERE a.SalesOrderID=@i
go
(3) OPTIMIZEFOR(@variable_name= literal_constant[ , …n] )
使用OPTIMIZE FOR 这个查询指导,就能够让SQL Server做到这一点。这是SQL 2005以后的一个新功能。
create procNoSniff_QueryHint_OptimizeFor(@iint)as
select count(b.SalesOrderID),sum(p.Weight)
from dbo.SalesOrderHeader_testa
inner joindbo.SalesOrderDetail_testb
on a.SalesOrderID=b.SalesOrderID
inner joinProduction.Productp
on b.ProductID=p.ProductID
where a.SalesOrderID=@i
option (optimizefor(@i= 75124))
go
(4) Plan Guide
以上方法有个明显的局限性,就是徐要修改存储过程定义。有些时候没有应用开发组的许可,修改存储过程是不可以的。对用sp_executesql方式调用的指令,问题更大,因为这些指令可能是写在应用程序里面而不是SQLServer里。数据库管理员没有办法去修改应用程序。自SQLServer 2005以后,引入和完善了一种叫PlanGuide的功能,数据库管理员可以告诉SQLServer,当运行某个语句时,请数据库使用我制定的执行计划。这样就不许要修改存储过程或者应用。例如可以用下面的方法,在原来那个有parameter sniffing问题的存储过程”Sniff”上,解决sniffing问题。
EXEC sp_create_plan_guide
@name= N'Guide1',
@stmt = N'select count(b.SalesOrderID),sum(p.Weight)
from dbo.SalesOrderHeader_test a
inner join dbo.SalesOrderDetail_test b
on a.SalesOrderID = b.SalesOrderID
inner join Production.Product p
on b.ProductID = p.ProductID
where a.SalesOrderID =@i',
@type = N'OBJECT',
@module_or_batch = N'Sniff',
@params = NULL,
@hints = N'OPTION (optimize for (@i = 75124))';
go
由于以上两个问题,导致该方案在实际中并不是很好用。
最优解决方案:
总体优化思路与上面的类似,只不过取增量范围是通过mio_log、in_force_date、plnmio_date字段上的索引取出mio_log_id范围,这三个索引取出的最大mio_log_id的最大值为@mio_log_id_max,最小的mio_log_id的最小值为@mio_log_id_min,那么增量数据范围可取出为mio_log_idbetween @mio_log_id_min and @mio_log_id_max。这是因为是瞬间完成的,同时通过mio_log_id取增量时能够确保走聚集索引。
具体解决方案如下:
SELECT @mio_log_id_max3=Max(mio_log_id),
@mio_log_id_min3 = Min(mio_log_id)
FROM dbo.freph_a01_fromtask3c(INDEX=i2_freph_a01_fromtask3)
INNER loop JOIN mio_logaWITH(nolock)
ON a.cntr_no = c.cntr_no
AND a.pol_code=c.pol_code
WHERE c.in_force_dateBETWEEN@date_minAND @date_max
SELECT @mio_log_id_max2=Max(mio_log_id),
@mio_log_id_min2 = Min(mio_log_id)
FROM mio_log(INDEX=idx_mio_log_plnmio_date)
WHERE plnmio_dateBETWEEN@date_minAND @date_max
SELECT @mio_log_id_max1=Max(mio_log_id),
@mio_log_id_min1 = Min(mio_log_id)
FROM mio_log(INDEX=idx_mio_log_mio_date)
WHERE mio_dateBETWEEN@date_minAND @date_max
SELECT @mio_log_id_max=dbo.F_find_max(@mio_log_id_max1,@mio_log_id_max2,@mio_log_id_max3)
SELECT @mio_log_id_min=dbo.F_find_min(@mio_log_id_min1,@mio_log_id_min2,@mio_log_id_min3)
SELECT (CASE
WHEN in_force_date IS NOT NULL THEN
(CASE
WHEN mio_date>= in_force_dateTHENmio_date
ELSE in_force_date
END )
WHEN in_force_date IS NULL THEN
(CASE
WHEN mio_date>= plnmio_dateTHENmio_date
ELSE plnmio_date
END )
ELSE mio_date
END ) mio_date
FROM (SELECTa.mio_date,
a.plnmio_date,
c.in_force_date
FROM dbo.mio_logaWITH(nolock)
INNER JOIN dbo.freph_a01_fromtask3cWITH(nolock)
ON a.cntr_no = c.cntr_no
AND a.pol_code=c.pol_code
WHERE mio_log_id BETWEEN @mio_log_id_min AND @mio_log_id_max) T
WHERE ((t.in_force_dateISNOT NULL
AND((CASE
WHEN t.mio_date>=t.in_force_dateTHENt.mio_date
ELSE t.in_force_date
END ) BETWEEN @date_minAND@date_max ) )
OR(t.in_force_dateISNULL
AND((CASE
WHEN t.mio_date>=t.plnmio_dateTHENt.mio_date
ELSE t.plnmio_date
END ) BETWEEN @date_minAND@date_max ) ) )
该方案在实施过程中有两个问题需要注意:
1. 通过非聚集索引取聚集索引键的最大最小值时,其自身生成的执行计划效率低下,需要通过query hint指导SQL Server优化器选择正确的执行计划:
set statisticsioon
set statisticstimeon
declare @date_mindatetime
declare @date_maxdatetime
set @date_min='2013-07-15'
set @date_max='2013-07-25'
declare @mio_log_id_max1int
declare @mio_log_id_min1int
select @mio_log_id_max1=max(mio_log_id),@mio_log_id_min1=min(mio_log_id)
from mio_log
where mio_datebetween@date_minAND @date_max
执行计划如下为两个并行聚集索引扫描:
之所以通过聚集索引扫描来得到最大、最小mio_log_id,并不是进行完整的聚集索引扫描。SQL Server优化器以为从两头分别进行扫描,碰到第一个符合WHERE条件就返回的算法是最优的。而实验中通过参数得到的实际数据均分布在mio_log的最大端,得到最小的mio_log_id几乎就扫描了整个mio_log表,因而整个逻辑读为【到目前为止结果还没出来……,不等了】 。
该问题可以通过指导SQL Server优化器选择正确的执行计划解决:
select @mio_log_id_max1=max(mio_log_id),@mio_log_id_min1=min(mio_log_id)
from mio_log(index=idx_mio_log_mio_date)
where mio_datebetween@date_minAND @date_max
执行计划如下:
逻辑读673,耗时215 ms。
2. 通过freph_a01_fromtask3表in_force_date字段获取mio_log表的mio_log_id时,其自身生成的执行计划效率低下,需要通过query hint指导SQL Server优化器选择正确的执行计划:
SELECT @mio_log_id_max3=Max(mio_log_id),
@mio_log_id_min3 = Min(mio_log_id)
FROM dbo.freph_a01_fromtask3c(INDEX=i2_freph_a01_fromtask3)
INNER loop JOIN mio_logaWITH(nolock)
ON a.cntr_no = c.cntr_no
AND a.pol_code=c.pol_code
WHERE c.in_force_dateBETWEEN@date_minAND @date_max
另外,在逻辑优化过程中,还用到了索引覆盖、关联字段添加索引、脏读等技术。
参考资料:
1. SQL Server ROWID: http://stackoverflow.com/questions/909155/equivalent-of-oracles-rowid-in-sql-server
2. 徐海蔚. Microsoft SQL Server企业级平台管理实践