hdu 2138(米勒—拉宾素数测试)

     How many prime numbers

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


Problem Description
  Give you a lot of positive integers, just to find out how many prime numbers there are.
 

Input
  There are a lot of cases. In each case, there is an integer N representing the number of integers to find. Each integer won’t exceed 32-bit signed integer, and each of them won’t be less than 2.
 

Output
  For each case, print the number of prime numbers you have found out.
 

Sample Input
  
  
3 2 3 4
 

Sample Output
  
  
2
 

解题思路:这道题目如果靠筛选法那肯定会超时。米勒—拉宾素数测试可以进行大素数判断。。。
米勒—拉宾素数测试主要依靠两个基本定理:
1)费马小定理:当gcd(a,p)=1且p为素数时,有a^p-1 mod p = 1
2)快速幂取模算法(RSA公钥加密算法)
其实这个算法模板我也没有很明白,先凑合着看吧。。。

AC:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

__int64 qpow(int a,int b,int r)
{
	__int64 ans = 1,buff = a;
	while(b)
	{
		if(b & 1)
			ans = (ans*buff) % r;
		buff = (buff*buff) % r;
		b >>= 1;
	}
	return ans;
}

bool Miller_Rabbin(int n,int a)
{
	int r = 0,s = n-1,j;
	if(!(n % a)) return false;
	while(!(s & 1))
	{
		s >>= 1;
		r++;
	}
	__int64 k = qpow(a,s,n);
	if(k == 1)
		return true;
	for(j = 0; j < r; j++, k = k * k % n)
		if(k == n-1)
			return true;
	return false;
}

bool isPrime(int n)
{
	int tab[4] = {2,3,5,7};
	for(int i = 0; i < 4; i++)
	{
		if(n == tab[i])
			return true;
		if(!Miller_Rabbin(n,tab[i]))
			return false;
	}
	return true;
}

int main()
{
	int n;
	while(cin>>n)
	{
		int a,ans = 0;
		while(n--)
		{
			cin>>a;
			if(isPrime(a))
				ans++;
		}
		cout<<ans<<endl;
	}
	return 0;
}


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值