hdu 4183(最大流)

原创 2016年05月30日 10:20:01

Pahom on Water

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


Problem Description
Pahom on Water is an interactive computer game inspired by a short story of Leo Tolstoy about a poor man who, in his lust for land, forfeits everything. The game's starting screen displays a number of circular pads painted with colours from the visible light spectrum. More than one pad may be painted with the same colour (defined by a certain frequency) except for the two colours red and violet. The display contains only one red pad (the lowest frequency of 400 THz) and one violet pad (the highest frequency of 789 THz). A pad may intersect, or even contain another pad with a different colour but never merely touch its boundary. The display also shows a figure representing Pahom standing on the red pad.
The game's objective is to walk the figure of Pahom from the red pad to the violet pad and return back to the red pad. The walk must observe the following rules:
1.If pad α and pad β have a common intersection and the frequency of the colour of pad α is strictly smaller than the frequency of the colour of pad β, then Pahom figure can walk from α to β during the walk from the red pad to the violet pad
2. If pad α and pad β have a common intersection and the frequency of the colour of pad α is strictly greater than the frequency of the colour of pad β, then Pahom figure can walk from α to β during the walk from the violet pad to the red pad
3. A coloured pad, with the exception of the red pad, disappears from display when the Pahom figure walks away from it.
The developer of the game has programmed all the whizzbang features of the game. All that is left is to ensure that Pahom has a chance to succeed in each instance of the game (that is, there is at least one valid walk from the red pad to the violet pad and then back again to the red pad.) Your task is to write a program to check whether at least one valid path exists in each instance of the game.
 

Input
The input starts with an integer K (1 <= K <= 50) indicating the number of scenarios on a line by itself. The description for each scenario starts with an integer N (2 <= N <= 300) indicating the number of pads, on a line by itself, followed by N lines that describe the colors, locations and sizes of the N pads. Each line contains the frequency, followed by the x- and y-coordinates of the pad's center and then the radius. The frequency is given as a real value with no more than three decimal places. The coordinates and radius are given, in meters, as integers. All values are separated by a single space. All integer values are in the range of -10,000 to 10,000 inclusive. In each scenario, all frequencies are in the range of 400.0 to 789.0 inclusive. Exactly one pad will have a frequency of “400.0” and exactly one pad will have a frequency of “789.0”.
 

Output
The output for each scenario consists of a single line that contains: Game is VALID, or Game is NOT VALID
 

Sample Input
2 2 400.0 0 0 4 789.0 7 0 2 4 400.0 0 0 4 789.0 7 0 2 500.35 5 0 2 500.32 5 0 3
 

Sample Output
Game is NOT VALID Game is VALID
 
题意:有多个点,每个点给出坐标与半径,加入两个点相交,就可以从这两个点走。题目要求先从起点到终点,再从终点回到起点。从起点到终点的过程中,只能从频率小的走到频率大的点(前提是两点相交),从终点到起点的过程中,只能从频率大的走到频率小的。在走的过程中,除了起点与终点,别的只要走过就会消失,就是说只能走一次。问可不可以从起点到终点又回到起点。
解题思路:这个题我一开始的想法是拆点,但似乎并不能起到限制每个点只能走一次的作用,所以只好想别的办法了。之后我的想法就直接限制边,每条边的容量为1,这样跑最大流只要大于等于2,就一定是满足要求的。因为容量为1,代表着这一条边的两个顶点都只能经过一次,而最大流大于等于2是因为要从终点返回,那我们就可以认为从源点出发的几条流汇聚到汇点。此外,如果源点和汇点都能直接到达,就直接输出了。这道题只要想清了就很简单了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

const int maxn = 305;
const int inf = 0x3f3f3f3f;
struct Node
{
	double f;
	int x,y,r;
}p[maxn];
struct Edge
{
	int v,flow,next;
}edge[maxn*maxn];
int n,cnt,Head[maxn],layer[maxn];

void addedge(int u,int v,int flow)
{
	edge[cnt].v = v;  
    edge[cnt].flow = flow;  
    edge[cnt].next = Head[u];  
    Head[u] = cnt++;  
  
    swap(u, v);  
  
    edge[cnt].v = v;  
    edge[cnt].flow = 0;  
    edge[cnt].next = Head[u];  
    Head[u] = cnt++;  
}

bool cmp(Node a,Node b)
{
	return a.f < b.f;
}

int dist(Node a,Node b)
{
	return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}

bool bfs(int start, int End)  
{  
    queue<int> Q;
	Q.push(start);  
    memset(layer, 0, sizeof(layer));  
    layer[start] = 1;  
    while(Q.size())  
    {  
        int u = Q.front();
		Q.pop();  
        if(u == End) return true;  
        for(int j = Head[u]; j != -1; j = edge[j].next)  
        {  
            int v = edge[j].v;  
            if(layer[v] == 0 && edge[j].flow)  
            {  
                layer[v] = layer[u] + 1;  
                Q.push(v);  
            }  
        }  
    }  
    return false;  
}  

int dfs(int u, int MaxFlow, int End)  
{  
    if(u == End) return MaxFlow;  
    int uflow = 0;  
    for(int j = Head[u]; j != -1; j = edge[j].next)  
    {  
        int v = edge[j].v;  
        if(layer[v] == layer[u] + 1 && edge[j].flow)  
        {  
            int flow = min(MaxFlow - uflow, edge[j].flow);  
            flow = dfs(v, flow, End);  
            edge[j].flow -= flow;  
            edge[j^1].flow += flow;  
            uflow += flow;  
            if(uflow == MaxFlow)break;  
        }  
    }  
    if(uflow == 0)  
        layer[u] = 0;  
    return uflow;  
}  

int dinic(int start, int End)  
{  
    int MaxFlow = 0;  
    while(bfs(start, End) == true)  
        MaxFlow += dfs(start,inf,End);  
    return MaxFlow;  
}  

int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i = 1; i <= n; i++)
			scanf("%lf%d%d%d",&p[i].f,&p[i].x,&p[i].y,&p[i].r);
		memset(Head,-1,sizeof(Head));
		cnt = 0;
		sort(p+1,p+1+n,cmp);
		for(int i = 1; i < n; i++)
			for(int j = i + 1; j <= n; j++)
			{
				if(dist(p[i],p[j]) < (p[i].r + p[j].r) * (p[i].r + p[j].r))
					addedge(i,j,1);
			}
		if(dist(p[1],p[n]) < (p[1].r + p[n].r) * (p[1].r + p[n].r))
			printf("Game is VALID\n");
		else{
			int ans = dinic(1,n);
			if(ans >= 2)
				printf("Game is VALID\n");
			else printf("Game is NOT VALID\n");
		}
	}
	return 0;
}


相关文章推荐

hdu 4183 Pahom on Water(最大流)

题意:二维空间上有一些点,每个点有一个半径r和频率f,要从某一个点S走到另一个点T,然后再从T回到S。从S到T时,如果两个点表示的圆相交并且第一个点小于第二个点的频率的,那么能从第一个点到第二个点,从...
  • qian99
  • qian99
  • 2014年03月09日 17:07
  • 938

最大流 hdu 4183

/** hdu 4183 求两点之间来回不重复的两条路就是要求从起点到终点至少有两条不重复的路径,最大流大于等于2即可 **/ #include #include #include #incl...
  • mtxxxx
  • mtxxxx
  • 2017年02月28日 19:14
  • 97

HDU_4183_Pahom on Water(最大流)

题意:有N个点,给出每个点的频率、坐标与半径。两点相交即连通。起点是频率最小的那个点,终点是频率最大的那个点。题目要求先从起点到终点,再从终点回到起点。从起点到终点的过程中,只能从频率小的走到频率大的...

HDU 4183 Pahom on Water(最大流SAP)

Pahom on Water Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

HDU 4183 Pahom on Water (拆点最大流)

HDU 4183 Pahom on Water (拆点最大流) 给你一些平板的频率f,坐标(x,y),半径r,要求从f=400.0的点出发,经过有相交的平板,到达f=789.0的点,再回到f=40...

HDU 4183Pahom on Water(网络流之最大流)

题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4183 这题题目意思很难看懂。。我看了好长时间也没看懂。。最终是从网上找的翻译。。我就在这翻译一下吧。...

hdoj 4183 Pahom on Water 【基础最大流】

题目:hdoj 4183 Pahom on Water 题意:题目有点长,读懂了就是个水的最大流,每次从789开始到400,走的话必须是两个圆相交而且频率递增的,每个点只走一次,求有没有满足...

hdu 4183 Pahom on Water 最大流

一个平面上有n个圆, 每个圆都有一个频率, 如果两个圆

HDU 5352 MZL's City(最小费用最大流-mcmf)

Description 给你n个点,m次操作,和整数k 1操作,每次最多可以修复k个属于x所在连通块内的点 2操作,修复x与y之间的路,双向边 3操作,告诉你损坏了一些道路 问根据以...
  • V5ZSQ
  • V5ZSQ
  • 2015年08月11日 18:39
  • 279

hdu3549Flow Problem(最大流 模板题)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3549 网络流最大流模板题。 #include #include #include #def...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 4183(最大流)
举报原因:
原因补充:

(最多只允许输入30个字)