堆排序

原创 2015年07月08日 20:25:48

        堆是一种完全二叉树,分为小根堆和大根堆。大根堆中任意节点的值都不大于其父节点的值。有些类似于二叉搜索树,都是要求父节点和子节点的值满足某种关系。

        堆排序的基本思想是,先用所给数据建立大根堆,堆顶元素即为最大值,将其与最后一个元素交换,此时最后一个元素为最大值;再对最大值之前的元素进行调整,使其恢复为大根堆。再如此将次大值取出排列在最大值之前,循环往复,直到所有元素都排好序。

        于是,排序的关键就是建堆和调整。如下HeapAjust函数实现调整树的功能,使其满足堆的性质。算法是:从一个指定节点开始,如果某个节点的值小于其子节点的值,就将其与较大的子节点交换,以使当前父节点与子节点满足堆的性质;然而,进行调整后,以被交换的子节点为根的子树可能又不满足堆的性质了,因此需要继续向下迭代遍历,直到当前节点满足堆的性质,就退出循环。

        这是调整函数,想要建立堆,需要从最后一个非叶节点开始,自底向上调用此函数。堆排序时,每次取出堆中的最大元素后,要对剩下的元素进行调整,以维持堆的性质。直到所有节点都已取出,完成排序。

这是百度百科中调整函数、堆排序函数及测试代码:

#include <stdio.h>

//array是待调整的堆数组,i是待调整的数组元素的位置,nlength是数组的长度
//本函数功能是:调整以第i个节点(即值为array[i]的节点)为根节点的树,使其成为大根堆 
void HeapAdjust(int array[], int i, int nLength)
{
    int nChild;
    int nTemp;
    
    for(; 2*i+1 < nLength; i=nChild)
    {
        //子结点的位置=2*(父结点位置)+1
        nChild = 2*i+1;
        
        //得到子结点中较大的结点
         if(nChild < nLength-1 && array[nChild+1] > array[nChild])
            ++nChild;
            
        //如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
         if(array[i] < array[nChild])
        {
            nTemp=array[i];
            array[i]=array[nChild];
            array[nChild]=nTemp; 
        }
        else 
             break; //否则退出循环
    }
}   
//堆排序算法
void HeapSort(int array[], int length)
{
    int i, j;
    
    //建堆 
    //调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
    //length/2-1是最后一个非叶节点,此处"/"为整除
    for(i=length/2-1; i>=0; --i)
    {
        HeapAdjust(array, i, length);
    }
    
    //从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
     for(i=length-1; i>0; --i)
    {
        //把第一个元素和当前的最后一个元素交换,
         //保证当前的最后一个位置的元素都是在现在的这个序列之中最大的
         array[i] = array[0]^array[i];
        array[0] = array[0]^array[i];
        array[i] = array[0]^array[i];
        
        //不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
         HeapAdjust(array,0,i);
    }
}

int main()
{
    int i;
    int num[]={0,1,2,3,4,5,6,7,8,9};
    
    HeapSort(num, sizeof(num)/sizeof(int));
    
    for(i=0; i < sizeof(num)/sizeof(int); i++)
    {
        printf("%d ",num[i]);
    }
    
    printf("\n");
        
    return 0;
}


 

【排序算法】堆排序原理及Java实现

1、基本思想堆是一种特殊的树形数据结构,其每个节点都有一个值,通常提到的堆都是指一颗完全二叉树,根结点的值小于(或大于)两个子节点的值,同时,根节点的两个子树也分别是一个堆。 堆排序就是利用堆(...
  • jianyuerensheng
  • jianyuerensheng
  • 2016年04月27日 18:34
  • 8266

数据结构示例——堆排序过程

完整算法见[例程],本文用一个例子,演示堆排序的过程。例:对{57, 40, 38, 11, 13, 34, 48, 75, 6, 19, 9, 7}进行堆排序的过程。算法如下:void HeapSo...
  • sxhelijian
  • sxhelijian
  • 2015年12月14日 15:43
  • 8363

堆排序 纯C代码

跟上一篇实现思路一样,感觉还是少出现点幻数比较好,由于heapAdjust()调用频繁,故要尽量提高这段代码的效率 #include #define N 1000 #define INF 99...
  • architect19
  • architect19
  • 2013年05月13日 22:44
  • 4439

经典排序算法----堆与堆排序(不稳定)

复杂度O(nlogn)
  • qianqin_2014
  • qianqin_2014
  • 2016年07月31日 11:48
  • 1845

java堆排序递归代码,无原理版,比较好理解

public class HeapOperate2 { /* * 建立堆时只需要保证根结点小于两个子结点或者大于两个子结点,对两个子结点大小没有要求 */ public static v...
  • zhuqiuhui
  • zhuqiuhui
  • 2016年04月21日 23:29
  • 1218

《算法导论》之堆排序学习心得

今天学习了《算法导论》第六章的堆排序,之前有人问我对
  • shiyanwei1989
  • shiyanwei1989
  • 2014年04月15日 20:18
  • 635

topk--堆排序--小顶堆

【问题描述】 假设需要我们在一堆海量数据中找出排名前k的数据;最好的方法是用最小堆排序,直接用前k个数据建立一个小顶堆,然后遍历剩余的数, ①如果此数 ②如果此数>堆顶的数,则将此数和堆顶的数交...
  • suibianshen2012
  • suibianshen2012
  • 2016年07月14日 07:58
  • 1149

[大、小根堆应用总结一]堆排序的应用场景

前言 在整理算法题的时候发现,大根堆(小根堆)这种数据结构在各类算法中应用比较广泛,典型的堆排序,以及利用大小根堆这种数据结构来找出一个解决问题的算法最优解。因此,我打算单独将关于堆的应用独立总结...
  • shakespeare001
  • shakespeare001
  • 2016年05月10日 09:53
  • 5271

经典算法——堆排序笔试题

阿里巴巴2016研发工程师笔试选择题 1.将整数数组(7-6-3-5-4-1-2)按照堆排序的方式原地进行升序排列,请问在第一轮排序结束之后,数组的顺序是_____。...
  • geekmanong
  • geekmanong
  • 2016年04月21日 15:44
  • 1873

堆排序原理及其实现(C++)

堆排序原理及其实现(C++)1 堆排序的引入 我们知道`简单选择排序`的时间复杂度为O(n^2),熟悉各种排序算法的朋友都知道,这个时间复杂度是很大的,所以怎样减小简单选择排序的时间复杂度呢?从上...
  • yanglr2010
  • yanglr2010
  • 2016年10月18日 21:48
  • 3191
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:堆排序
举报原因:
原因补充:

(最多只允许输入30个字)