HDOJ 5793 A Boring Question(快速幂+逆元+数学推导)

本文介绍了一种结合快速排序和逆元解决特定数学问题的方法。通过实例解析,阐述了如何利用这些技术来提高算法效率并确保计算准确性。同时提供了完整的代码实现。


 
 


思路:

 据说这是道水题…然后只需要推导出一个数学公式...


表示看了之后觉得推不出来...但是涌神告诉我们说,必须要用到快速排序和逆元。快速排序是为了更快的降低时间复杂度,而逆元则是为了在运算中不会出错。比如,两个int类型的数相乘,可能会爆掉,所以这时候只能用逆元来做。类似于之前做过的一道题,求(a/b)%9973的那道题其实是一个道理。至于说找规律,不妨举个例子,a2=3a1+1,等比为m,那么配凑一下,1+x=m*x,x=1/(m-1),上面那个例子就凑成了(a2+1/2)/(a1+1/2)=3。所以首项是:m+1+[1/(m-1)],第n项是[m+1+1/(m-1)]*m^(n-1),那么答案就是:[m^(n+1)-1]/(m-1)。


代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#define mod 1000000007
using namespace std;

long long powt(long long a,long long b)
{
    long long r = 1;
    while(b)
    {
        if(b & 1) r = r * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return r;
}

int main()
{
    long long t,n,m;
    scanf("%lld",&t);
    while(t--)
    {
        scanf("%lld%lld",&n,&m);
        printf("%lld\n",((powt(m,n + 1) - 1) * powt(m - 1,mod - 2) % mod + mod) % mod);
    }
    return 0;
}


打表代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define mid(a,b) ((a+b)>>1)
#define eps 1e-8
#define maxn 2100
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

LL e[510][510];
void make(){
    for(int i=0;i<510;i++)
        e[i][0]=1;
    for(int i=1;i<510;i++)
        for(int j=1;j<510;j++)
            e[i][j]=(e[i-1][j-1]+e[i-1][j])%mod;
}

int n,m,ans;
void fun(int len, vector<int> cur, int last) {
    if(len == m) {
        int tmp = 1;
        for(int i=1; i<cur.size(); i++) {
            tmp *= e[cur[i]][cur[i-1]];
        }
        ans += tmp;
        return;
    }

    for(int i=last; i<=n; i++) {
        cur.push_back(i);
        fun(len+1, cur, i);
        cur.pop_back();
    }
}

int main(int argc, char const *argv[])
{
    //IN;

    make();

    for(n=0; n<=5; n++) {
        for(m=2; m<=5; m++) {
            ans = 0;
            vector<int> cur; cur.clear();
            fun(0,cur,0);
            printf("%d-%d : %d\n", n,m,ans);
        }
    }

    return 0;
}









关于 阿里云盘CLI。仿 Linux shell 文件处理命令的阿里云盘命令行客户端,支持JavaScript插件,支持同步备份功能,支持相册批量下载。 特色 多平台支持, 支持 Windows, macOS, linux(x86/x64/arm), android, iOS 等 阿里云盘多用户支持 支持备份盘,资源库无缝切换 下载网盘内文件, 支持多个文件或目录下载, 支持断点续传和单文件并行下载。支持软链接(符号链接)文件。 上传本地文件, 支持多个文件或目录上传,支持排除指定文件夹/文件(正则表达式)功能。支持软链接(符号链接)文件。 同步备份功能支持备份本地文件到云盘,备份云盘文件到本地,双向同步备份保持本地文件和网盘文件同步。常用于嵌入式或者NAS等设备,支持docker镜像部署。 命令和文件路径输入支持Tab键自动补全,路径支持通配符匹配模式 支持JavaScript插件,你可以按照自己的需要定制上传/下载中关键步骤的行为,最大程度满足自己的个性化需求 支持共享相册的相关操作,支持批量下载相册所有普通照片、实况照片文件到本地 支持多用户联合下载功能,对下载速度有极致追求的用户可以尝试使用该选项。详情请查看文档多用户联合下载 如果大家有打算开通阿里云盘VIP会员,可以使用阿里云盘APP扫描下面的优惠推荐码进行开通。 注意:您需要开通【三方应用权益包】,这样使用本程序下载才能加速,否则下载无法提速。 Windows不第二步打开aliyunpan命令行程序,任何云盘命令都有类似如下日志输出 如何登出和下线客户端 阿里云盘单账户最多只允许同时登录 10 台设备 当出现这个提示:你账号已超出最大登录设备数量,请先下线一台设备,然后重启本应用,才可以继续使用 说明你的账号登录客户端已经超过数量,你需要先登出其他客户端才能继续使用,如下所示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值