HDOJ 1176 免费馅饼(完全背包)

原创 2016年08月30日 15:31:58

免费馅饼

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 17   Accepted Submission(s) : 7

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)

Input

输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。

Output

每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

Sample Input

6
5 1
4 1
6 1
7 2
7 2
8 3
0

Sample Output

4

Author

lwg 



思路:

给了很多第t秒在第x位置会出现的馅饼,然后每次移动只有三种操作:向左移一个接住、不动接住、向右移一下接住(注意0点只能不动和右移,10点只能不动和左移)。然后状态转移方程 : dp[i][j] = dp[i][j] + max ( dp[i+1][j-1], dp[i+1][j] , dp[i+1][j+1] ) 。首先,dp[i][j]表示第i秒在第j个位置接到的馅饼数,然后状态转移方程就是第i秒在j位置包里已经含有的馅饼数+下一秒的左中右三个位置的最优决策结果。我觉得这道题的难点就是在于对dp数组所表示含义的确定,因为这道题里,t是变化的,馅饼掉落的位置也是变化的,有点让人摸不到头脑的感觉,但是仔细想一下,t有终止的时候所以t有范围,而x只会在0到10之间变化也是有范围的,和01背包的条件相比较一下,01背包里面物体的数量n是有范围的,背包的容量V也是有范围的,而且这里的t和n比较像,都是一种固定属性的并且主导了操作(时间流逝t增加、物品放入n减少),x和V比较像,都是操作的主要限制条件(接馅饼走动x变化,物体放入背包V变化)。我觉得这里是值得仔细想想的地方。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;

int dp[100005][12];//第t秒在第x位置所接陷饼数 
int max(int a,int b)
{
	return a>b?a:b;
}
int max(int a,int b,int c)
{
	int q=a>b?a:b;
	int w=b>c?b:c;
	return q>w?q:w;
} 

int main()
{
	//freopen("in.txt","r",stdin);
	int n;
	while(scanf("%d",&n)!=EOF&&n)
	{
		int maxn=0;
		memset(dp,0,sizeof(dp));
		while(n--)
		{
			int t=0,x=0;
		    scanf("%d%d",&x,&t);
		    dp[t][x]++;	
		    if(maxn<t)maxn=t;
		}
		for(int i=maxn-1;i>=0;i--)
		{
			for(int j=0;j<=10;j++)
			{
				if(j==0)
				{
					dp[i][j]=dp[i][j]+max(dp[i+1][j],dp[i+1][j+1]);
				}
				else if(j==10)
				{
					dp[i][j]=dp[i][j]+max(dp[i+1][j],dp[i+1][j-1]);
				}
				else 
				{
					dp[i][j]=dp[i][j]+max(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1]);
				}
			}
		}
		printf("%d\n",dp[0][5]);
	}
	return 0;
} 



版权声明:本博客为博主编程日记,转载请注明来源。

相关文章推荐

hdoj 1176 免费馅饼

免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub...
  • CillyB
  • CillyB
  • 2016年08月15日 21:01
  • 141

HDOJ 1176 免费馅饼 dp变形

免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi...

Hdoj 1176 免费馅饼 【动态规划】

免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total...

HDOJ1176 免费馅饼 【DP】+【经典数塔】

免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total...

hdoj1176 免费馅饼(DP)

题解:  动态规划,这一题实质上跟2084(数塔)那题是一样的,因为这一题可以转化成数塔问题,“馅饼掉下来的时刻”就是“塔的深度”,也就是dp数组的第1维;而第2维是一样的,都是表示位置。考虑题意给出...

HDOJ 1176 免费馅饼(基础DP方程)

免费馅饼                                                                            Time Limit: 2000/10...

HDoj-1176-免费馅饼

免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi...

hdoj1176免费馅饼【dp】

免费馅饼 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Su...

HDOJ 1248 寒冰王座 【完全背包】

寒冰王座 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total...

HDOJ1963完全背包

完全背包简单题解
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDOJ 1176 免费馅饼(完全背包)
举报原因:
原因补充:

(最多只允许输入30个字)