关闭

R时间序列举例(预测未来几个月的用气量)

标签: R
780人阅读 评论(0) 收藏 举报
分类:

一、数据准备

见数据:

1179.8945
1380.502
1213.4335
1609.2345
1202.7765
1413.3885
1338.052
1598.848
1374.6365
1411.9695
1236.4185
1146.867
1004.8555
1493.0305
1207.844
1285.773
1206.2815
1169.292
1167.0495
1402.294
958.091
599.3945
1123.6035
1145.016
1179.8945
1380.502
1169.542847
1178.448372
1187.353897
1196.259422
1205.164947
1214.070472
1222.975997
1231.881522
1240.787047
1249.692572
1258.598097
1267.503622
1276.409147
1285.314672
1294.220197
1303.125722
1312.031247
1320.936772
1329.842297
1338.747822
1347.653347
1356.558872
1179.8945
1380.502
1213.4335
1609.2345
1202.7765
1413.3885
1338.052
1598.848
1374.6365
1411.9695
1236.4185
1146.867
1004.8555
1493.0305
1207.844
1285.773
1206.2815
1169.292
1167.0495
1402.294
958.091
599.3945
1123.6035
1145.016
1179.8945
1380.502
1169.542847
1178.448372
1187.352322
1196.259422
1205.164947
1214.070472
1222.97222
1231.881522
1240.787047
1249.692572
1258.598097
1267.503622
1276.409147
1285.314672
1294.220197
1303.125722
1312.031247
1320.936772
1329.842297
1338.747822
1347.653347

二、代码编写

Aram.R文件内容如下:

#加载每月的用气量数据
#skirts <- scan("http://robjhyndman.com/tsdldata/roberts/skirts.dat",skip=8)
skirts <- read.csv("E:/R_project/20160830/times.csv")


skirtsts<- ts(skirts, frequency=12,start = c(2015))
#可以打印序列
print(skirtsts)
#显示图形
plot.ts(skirtsts)
#通过键入下面的代码来得到时间序列(数据存于“skirtsts”) 的一阶差分, 并画出差分序列的图
skirtstsdiff<-diff(skirtsts,differences=1)
#显示
plot.ts(skirtstsdiff)
#从一阶差分的图中可以看出,数据仍是不平稳的,继续差分
skirtstsdiff2<-diff(skirtsts,differences=5)
plot.ts(skirtstsdiff2)
#找到合适的ARIMA模型
#期望 1 到 20 之间的会偶尔超出 95%的置信边界
acf(skirtstsdiff2,lag.max=20)
acf(skirtstsdiff2,lag.max=20,plot=FALSE)


# 偏自相关值选5、3、2阶试试
library(forecast)
skirtsarima<-arima(skirtsts,order=c(1,2,5))
skirtsarimaforecast<-forecast.Arima(skirtsarima,h=2,level=c(11.5))


#预测后2个月的用气量
print(skirtsarimaforecast)


#显示图形
plot.forecast(skirtsarimaforecast)



三、模型验证

……



0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

R时间序列分析

R时间序列分析   为什么定阶数,如何定,如何判断 R时间序列分析工具 xts包  xts(x=NUll,order.by=index(x),…)  coredata()   xts数据子集 O...
  • q383700092
  • q383700092
  • 2016-06-10 21:05
  • 1693

用XGBoost做时间序列预测—forecastxgb包

文章来源:https://zhuanlan.zhihu.com/p/24236567 注:复制的文档中,图片没能复制过来,如需了解详情,请看原文。 作为forecast包与xgboos...
  • u010035907
  • u010035907
  • 2017-04-23 23:48
  • 1945

用R分析时间序列(time series)数据

用R分析时间序列(time series)数据 时间序列(time series)是一系列有序的数据。通常是等时间间隔的采样数据。如果不是等间隔,则一般会标注每个数据点的时间刻度。  下面...
  • NIeson2012
  • NIeson2012
  • 2015-11-10 22:53
  • 2331

预测海藻数量(R语言)

1. 问题描述与目标 我希望通过建立预测模型预测河流中有害海藻的数量。本案例的目的是更好地了解影响藻类频率的因素。也就是说,我们要了解藻类的频率和水样的某些化学性质以及其他特征(如季节、河流类型等)...
  • tonight1103
  • tonight1103
  • 2016-09-18 20:46
  • 1263

第十三章 时间序列分析和预测

时间序列的关键是确定出已有的时间序列的变化模式,并假定这种模式会延续到未来。 时间序列分析就其发展的历史阶段和所使用的统计分析方法来看,有传统的时间序列分析和现代时间序列分析。下文主要介绍传统的时间...
  • troubleisafriend
  • troubleisafriend
  • 2015-09-01 21:11
  • 4230

简单入门循环神经网络RNN:时间序列数据的首选神经网络

随着科学技术的发展以及硬件计算能力的大幅提升,人工智能已经从几十年的幕后工作一下子跃入人们眼帘。人工智能的背后源自于大数据、高性能的硬件与优秀的算法的支持。2016年,深度学习已成为Google搜索的...
  • scutjy2015
  • scutjy2015
  • 2017-07-11 14:27
  • 372

京东算法大赛-高潜用户购买意向预测(二)策略迭代

上一篇中介绍了以为热心参赛者的代码和流程。这篇将记录自己的策略更新过程。 一 数据特征统计分析 几个主要的点: (1)各类行为与转化(购买)之间的关联关系,包括浏览、加入购物车、关注 (2)已购商...
  • liuhuoxingkong
  • liuhuoxingkong
  • 2017-04-14 11:47
  • 3653

R语言实战分析预测海藻数量

R语言数据分析项目实战---利用多元线性回归,决策树,随机森林对海藻数量进行预测分析,包括前期的数据分析整理,很全面的项目实战
  • hao1175513356
  • hao1175513356
  • 2016-12-06 20:54
  • 1176

时间序列之灰色预测

灰色预测是针对灰色系统所做的预测。控制论中,信息的多少常以颜色的深浅来表示,信息充足、确定为白色;信息缺乏、不确定为黑色;部分确定部分不确定为灰色。灰色系统指信息不完全的系统,信息的不完全可能是系统因...
  • cl1143015961
  • cl1143015961
  • 2014-11-25 16:05
  • 2567

R:预测离散值时间序列

问题描述:     假设这是每天的天气数据:1代表有雨,0代表没有雨。假设已经知道最近几天是否下雨,我们希望预测明天是否会下雨。具体而言,对于某个k值,我们会根据最近k天的天气记录来预测明天的天气。...
  • thoixy
  • thoixy
  • 2014-10-24 18:17
  • 1500
    个人资料
    • 访问:824259次
    • 积分:12307
    • 等级:
    • 排名:第1367名
    • 原创:418篇
    • 转载:63篇
    • 译文:54篇
    • 评论:94条
    博客专栏
    最新评论