关闭

R时间序列举例(预测未来几个月的用气量)

标签: R
616人阅读 评论(0) 收藏 举报
分类:

一、数据准备

见数据:


二、代码编写

Aram.R文件内容如下:

#加载每月的用气量数据
#skirts <- scan("http://robjhyndman.com/tsdldata/roberts/skirts.dat",skip=8)
skirts <- read.csv("E:/R_project/20160830/times.csv")


skirtsts<- ts(skirts, frequency=12,start = c(2015))
#可以打印序列
print(skirtsts)
#显示图形
plot.ts(skirtsts)
#通过键入下面的代码来得到时间序列(数据存于“skirtsts”) 的一阶差分, 并画出差分序列的图
skirtstsdiff<-diff(skirtsts,differences=1)
#显示
plot.ts(skirtstsdiff)
#从一阶差分的图中可以看出,数据仍是不平稳的,继续差分
skirtstsdiff2<-diff(skirtsts,differences=5)
plot.ts(skirtstsdiff2)
#找到合适的ARIMA模型
#期望 1 到 20 之间的会偶尔超出 95%的置信边界
acf(skirtstsdiff2,lag.max=20)
acf(skirtstsdiff2,lag.max=20,plot=FALSE)


# 偏自相关值选5、3、2阶试试
library(forecast)
skirtsarima<-arima(skirtsts,order=c(1,2,5))
skirtsarimaforecast<-forecast.Arima(skirtsarima,h=2,level=c(11.5))


#预测后2个月的用气量
print(skirtsarimaforecast)


#显示图形
plot.forecast(skirtsarimaforecast)



三、模型验证

……



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:596423次
    • 积分:10243
    • 等级:
    • 排名:第1771名
    • 原创:407篇
    • 转载:70篇
    • 译文:35篇
    • 评论:65条
    最新评论