[Spark基础]-- spark streaming从指定offset处消费Kafka数据(第一种方式)

本文介绍如何在Spark Streaming程序意外退出后,从上次记录的offset继续消费Kafka数据,避免数据丢失。环境为kafka-0.9.0、spark-1.6.0等。实现步骤包括引入依赖、编写测试类,并提供了相关参考文档链接。

一、情景:当spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认是从latest的offset读取,这会导致数据丢失。为了避免数据丢失,那么我们需要记录每次消费的offset,以便下次检查并且从指定的offset开始读取

二、环境:kafka-0.9.0、spark-1.6.0、jdk-1.7、scala-2.10.5、idea16

三、实现代码:

      1、引入spark和kafka的相关依赖包

<?xml version="1.0" encoding="UTF-8"?>  
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
         xmlns="http://maven.apache.org/POM/4.0.0"  
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">  
    <modelVersion>4.0.0</modelVersion>  
  
    <groupId>com.ngaa</groupId>  
    <artifactId>test-my</artifactId>  
    <version>1.0-SNAPSHOT</version>
### 实现实时Kafka 数据流的步骤 在使用 Spark Streaming 消费 Kafka 数据流时,通常需要通过 Kafka 的高级 API 来接收数据,然后在 Spark Streaming 中进行实时理。以下是实现步骤和代码示例。 #### 创建 Kafka 数据流 为了创建一个从 Kafka 获取数据的 DStream,可以使用 `KafkaUtils.createDirectStream` 方法。这种方法直接从 Kafka 读取数据,而不需要通过接收器来接收数据,这在性能和可靠性上都有所提升。以下是一个示例代码片段: ```scala import org.apache.spark._ import org.apache.spark.streaming._ import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.streaming.kafka010._ val sparkConf = new SparkConf().setAppName("KafkaSparkStreaming") val ssc = new StreamingContext(sparkConf, Seconds(5)) val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "localhost:9092", "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "spark-streaming-group", "auto.offset.reset" -> "latest", "enable.auto.commit" -> (false: java.lang.Boolean) ) val topics = Array("input-topic") val stream = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) ) ``` #### Kafka 数据流 一旦创建了 Kafka 数据流,就可以开始对其进行理。例如,可以对数据进行转换、过滤或者执行其他操作。下面是一个简单的例子,展示如何将接收到的数据打印到控制台: ```scala stream.foreachRDD { rdd => rdd.foreach(record => { // record.value() 包含了从 Kafka 接收到的消息 println(s"Received message: ${record.value}") }) } ``` #### 启动 Spark Streaming 应用程序 最后,启动 Spark Streaming 应用程序并等待终止信号来关闭它: ```scala ssc.start() ssc.awaitTermination() ``` ### 注意事项 - 确保 Kafka 服务正在运行,并且已经创建了一个或多个主题用于测试。 - 在实际部署时,应该考虑如何理偏移量以及如何保证数据的恰好一次理[^2]。 - 如果需要持久化理结果,可以将数据写入 HDFS 或者其他存储系统。 ###
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oo寻梦in记

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值