tensorflow-示例2(MNIST集合上进行分类深度卷积网DCNN)

原创 2017年03月26日 21:44:30
在采用深度卷积网进行MNIST数据集进行分类,准确率达到99.2%左右
import tensorflow as tf
import math
import input_data
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1);
    return tf.Variable(initial);

def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape); 
    return tf.Variable(initial);

def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME');

def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME');

mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
# x_training表示训练集合的图像,None表示训练集合的图像的张数不确定,
# 784表示二维图像展为1维向量
# 定义一个po
x_training = tf.placeholder("float",[None,784]);
# 定义一个po
y_training_target = tf.placeholder("float",[None,10]);

# 深度卷积网络的权重和偏置
# 将x_training进行reshape
x_image = tf.reshape(x_training,[-1,28,28,1]);

# 第一层
W_conv1 = weight_variable([5,5,1,32]); 
b_conv1 = bias_variable([32]);
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1);
h_pool1 = max_pool_2x2(h_conv1);

# 第二层
W_conv2 = weight_variable([5, 5, 32, 64]);
b_conv2 = bias_variable([64]);
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2);
h_pool2 = max_pool_2x2(h_conv2);

# 全连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024]);
b_fc1 = bias_variable([1024]);
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]);
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1);
keep_prob = tf.placeholder("float");
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob); # 防止过拟合

# 输出层
W_fc2 = weight_variable([1024, 10]);
b_fc2 = bias_variable([10]);
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2); # 深度卷积网输出标签

# 目标函数
cross_entropy = -tf.reduce_sum(y_training_target*tf.log(y_conv))

# 优化方法
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 准确率计算
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_training_target,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.Session()
sess.run(tf.global_variables_initializer())

for i in range(20000):
    batch = mnist.train.next_batch(50)
    sess.run(train_step,feed_dict={x_training: batch[0], y_training_target: batch[1], keep_prob: 0.5})
    if i%100 == 0:
        print("step ",i,"training accuracy", sess.run(accuracy,feed_dict={x_training:batch[0], y_training_target: batch[1], keep_prob: 1.0}))
print("test accuracy",sess.run(accuracy,feed_dict={x_training: mnist.test.images, y_training_target: mnist.test.labels, keep_prob: 1.0}));   
    





TensorFlow学习笔记(三):Tutorial第二个例子-深入MNIST-卷积神经网络

这篇文章主要对TensorFlow的Tutorial第二个例子-深入MNIST-卷积神经网络一些不是特别明确的问题进行说明,包括卷积网络的结构与LeNet-5的区别,Dropout及ADAM优化器。...
  • nxcxl88
  • nxcxl88
  • 2016年08月05日 21:28
  • 4141

深度学习之卷积神经网络CNN及tensorflow代码实现示例

一、CNN的引入在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 2...
  • cxmscb
  • cxmscb
  • 2017年05月01日 13:28
  • 24214

TensorFlow学习笔记(5)--实现卷积神经网络(MNIST数据集)

这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层--卷积层1--池化层1--卷积层2--池化层2--全连接层1--全连接层2(输出层),这是一个...
  • lwplwf
  • lwplwf
  • 2017年03月08日 17:35
  • 5760

DCNN-tensorflow(深度卷积) 以MNIST集合上进行分类为例

在采用深度卷积网进行MNIST数据集进行分类,准确率达到99.2%左右 import tensorflow as tf import math import input_data def...
  • scutjy2015
  • scutjy2015
  • 2017年07月12日 09:07
  • 158

Tensorflow深度学习入门——采用卷积和池化优化训练MNIST数据——代码+注释

Tensorflow深度学习入门——采用卷积和池化优化训练MNIST数据——代码+注释 适合入门 # load MNIST data import input_data mnist...
  • xiao_lxl
  • xiao_lxl
  • 2016年11月24日 14:32
  • 885

TensorFlow实例(5.2)--MNIST手写数字进阶算法(卷积神经网络CNN) 之 卷积tf.nn.conv2d

本文是MNIST手写数字进阶算法(卷积神经网络CNN)的扩展篇主要通过数据演算,理解卷积函数tf.nn.conv2d...
  • carmelcarmen
  • carmelcarmen
  • 2017年12月30日 13:36
  • 55

(四)Tensorflow学习之旅——MNIST分类的卷积神经网络CNN示例

一个比较简单的CNN模型: 输入:28*28,需要将输入数据reshape成28*28 隐层1:32个神经元,卷积核5*5,池化2*2最大池化,卷积后特征图大小不变,池化后特征图为14*14,RE...
  • btbujhj
  • btbujhj
  • 2017年06月12日 21:21
  • 213

tensorflow学习-示例1(MNIST数据集合上的softmax分类模型)

tensorflow-示例1
  • hit1524468
  • hit1524468
  • 2017年03月26日 21:31
  • 421

tensorflow学习笔记之使用tensorflow进行MNIST分类(2)

版权声明:本文为博主原创文章,未经博主允许不得转载 最近在学习tensorflow,和大家分享一下自己的一些学习心得,欢迎大家探讨相互学习...
  • IEEE_FELLOW
  • IEEE_FELLOW
  • 2016年11月02日 20:31
  • 3960

TensorFlow3:构建卷积神经的MNIST

TensorFlow3:构建卷积神经的MNIST 在TensorFlow1中,我用TF针对数据领域经典问题:MINST数据集,做了一个入门训练,记得当时识别图片的准确率为92%吧,这次我们使用两层的...
  • weixin_37669436
  • weixin_37669436
  • 2017年05月17日 00:35
  • 206
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tensorflow-示例2(MNIST集合上进行分类深度卷积网DCNN)
举报原因:
原因补充:

(最多只允许输入30个字)