关闭

【Java】关于二叉树的广度优先遍历及完全二叉树判定算法

标签: 二叉树算法广度优先代码研究
471人阅读 评论(0) 收藏 举报

二叉树

在图论中是这样定义的:二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。如果不考虑连通性,允许图中有多个连通分量,这样的结构叫做森林。


广度优先遍历

连通图的一种遍历策略。因为它的思想是从一个顶点V0开始,辐射状地优先遍历其周围较广的区域,故得名。


首先是广度优先遍历,借助于一个队列来实现,首先把root放到队列当中,之后进入循环,拿出第一个元素,访问,依次把它的左右孩子放到队列当中(如果有的话),继续循环。

public void  breadthFirst(TreeNode root){
        if (root != null){
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            TreeNode node = root;
            queue.offer(node);
            while(!queue.isEmpty()){
                node = queue.poll();
                node.visit();
                if (node.getLeft() != null){
                    queue.offer(node.getLeft());
                }
                if (node.getRight() != null){
                    queue.offer(node.getRight());
                }
            }
        }
    }
关于完全二叉树的判定,这里是以广度优先便利为基础,引入了一个变量,step,它的意义是这样的,已遍历过得所有节点,度都等于2,那么step = 2;如果出现了一个节点,只有一个左孩子,step=1,需要注意的是,这样的节点,最多有一个,如果有的话,它的后续节点,都必须是叶子节点;从第一个叶子节点开始,step = 0;

另外引入了rightExist、leftExist、exist三个变量,exist有4个可能的值,0,1,2,3,代表左右节点的存在情况。

下面重点分析一下几种情况:

exist=0,单纯的把step=0即可

exist=1,只有右孩子,这种情况直接返回false

exist=2,只有左孩子,需要判定,step=2,也就是说,前面所有节点的度都等于2,继续遍历,同时把step=1;否则,返回false

exit=3,左右都有,需要判定,step=2,也就是说,前面所有节点的度都等于2,继续遍历;否则,返回false

public boolean isComplete(TreeNode root){
        if (root != null){
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            TreeNode node = root;
            queue.offer(node);
            int step = 2;
            while(!queue.isEmpty()){
                node = queue.poll();
                int rightExist = node.getRight() == null ? 0 : 1;
                int leftExist = node.getLeft() == null ? 0 : 1;
                int exist = rightExist | (leftExist << 1);

                switch(exist){
                    case 0:
                        step = 0;
                        break;
                    case 1:
                        return false;
                    case 2:
                        if (step == 2){
                            step = 1;
                            queue.offer(node.getLeft());
                            break;
                        }else{
                            return false;
                        }
                    case 3:
                        if (step == 2){
                            queue.offer(node.getLeft());
                            queue.offer(node.getRight());
                            break;
                        }else{
                            return false;
                        }
                    default:
                        break;

                }


            }
        }
        return true;
    }



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1109307次
    • 积分:18581
    • 等级:
    • 排名:第487名
    • 原创:753篇
    • 转载:281篇
    • 译文:13篇
    • 评论:247条
    博客专栏
    文章分类
    最新评论