关闭

一种人工智能学习--兼谈基于微分几何与拓扑的神经网络

615人阅读 评论(0) 收藏 举报

一种人工智能学习–兼谈基于微分几何与拓扑的神经网络

标签(空格分隔): 人工智能 神经网络 拓扑 微分几何 深度学习


版权声明:本文为作者原创文章,未经作者允许不得转载。

前言

提到人工智能,相信对机器学习、神经网络、深度学习等已经非常熟悉,这里我要提另一种人工智能学习结构——共形学习,亦反映了我的想法和兴趣,也暴露了我的局限和偏见,供读者朋友们拍砖。https://zybuluo.com/hjwang1/note/464470http://blog.csdn.net/hjwang1/article/details/52194739

第一章 共形学习Neuron

视觉神经示意图
视觉神经示意图
先上一张图,有个大概认识
人工智能共形学习
图一 人工智能共形学习系统结构

第一眼看上去,与深度学习有些类似,下面我们来进一步分析

  1. 同深度学习,共形学习也是分层的;
  2. 共形学习的结构是弹性的自组织的,可以随时根据数据横向扩展;
  3. 本质都是从具体到抽象的认识学习过程;
  4. 由简单到复杂的认识学习过程;
  5. 与深度学习不同的是,数据是可以按时按需喂给共形学习系统的;
  6. 共形学习中每个neuron内的数据不是独立的,之间是有联络的,这是与深度学习不同的;
  7. 共形学习中每个neuron的输入输出都是等维多元的;
  8. 共形学习中每个neuron内处理数据的数学基础是微分几何,而深度学习内是线性代数+非线性激活函数的模拟;线性代数是矩阵的运算,微分几何用到了共形变换,这里是特别的非线性。
  9. 共形学习中每个neuron都是独立的,其运算是完全可以并行的,效率是非常高的;
  10. 一方面共形学习中的算法是有指数级收敛的,另一方面,之前已有研究人员利用超导量子线路模拟拓扑系统并成功测量陈数,最近杜江峰院士领衔中国科大利用量子模拟技术实现拓扑数的直接测量,这也有可能随后还会大大提高这一块的运算效率。

第二章 共形学习实践

参考:微分几何与黎曼几何1,数学物理中的微分几何与拓扑学2,还有部分源程序代码3


作者 hjwang1@163.com
2016 年 05月 20日


  1. 《微分几何讲义》,陈省身、陈维桓著,访问参考更多内容。
  2. 数学物理中的微分几何与拓扑学 - 汪容
  3. 代码参见,github
0
0
查看评论

论机器人的环境感知与智主移动-兼谈基于微分几何的人工智能

论基于微分几何的机器智能-兼谈机器人的环境感知与智主移动 ● 序言 ● 第一章 当前智能算法 卷积网络机器学习深度学习可能的缺陷 ● 第二章 微分几何与智能 人脸及表情识别与微分几何视觉与微分几何大脑皮层与微分几何物理可能统一于几何因果率、推理与几何 ● 第三章 微分几何...
  • hjwang1
  • hjwang1
  • 2016-01-07 15:06
  • 830

一种人工智能学习--兼谈基于微分几何与拓扑的神经网络

一种人工智能学习–兼谈基于微分几何与拓扑的神经网络标签(空格分隔): 人工智能 神经网络 拓扑 微分几何 深度学习版权声明:本文为作者原创文章,未经作者允许不得转载。前言提到人工智能,相信对机器学习、神经网络、深度学习等已经非常熟悉,这里我要提另一种人工智能学习结构——共形学习,亦反映了我的想法和兴...
  • hjwang1
  • hjwang1
  • 2016-08-12 19:43
  • 1340

流形学习{manifold learning}

流形学习   假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。流形学习方法是模式识别中的基本方法,分为线性流...
  • mingtian715
  • mingtian715
  • 2016-04-27 16:27
  • 1294

模式识别(Pattern Recognition)学习笔记(十八)--感知器与神经网络

1.什么是人工神经网络(ANN)? 1.1ANN的由来        在人工智能中,有两个研究方向:1)先试图对人类或其他高等动物的自然智能建立一定的数学模型,然后借助这种方式来帮助理解智能活动的奥秘;2)通过数学手段,利用计算机建立具备一定智能的机器。回顾下...
  • eternity1118_
  • eternity1118_
  • 2016-06-03 18:52
  • 1536

朱松纯:初探计算机视觉三个源头兼谈人工智能

朱松纯   加州大学洛杉矶分校UCLA统计学和计算机科学教授(Song-Chun Zhu;www.stat.ucla.edu/~sczhu) 杨: 朱教授,你在计算机视觉领域耕耘20余年,获得很多奖项,是很资深的研究人员。近年来你又涉足认知科学、机器人和人工智能...
  • jiandanjinxin
  • jiandanjinxin
  • 2016-12-06 14:56
  • 939

做人工智能,先理解好这七大误区!

近几年,大数据、人工智能、AI等词已被媒体大肆宣传,让很多人赶鸭子上架也往这几个方面蹭一蹭,纷纷投入研发,但效果甚微,不禁让人产生疑问。人工智能真的如同媒体宣传那般神奇吗?今天大圣众包小编就为大家分享一篇来自简书的作者,关于人工智能的误区,先理解好再着手应用到自己的商业中!   误解一...
  • dashenghuahua
  • dashenghuahua
  • 2017-01-05 11:58
  • 605

神经网络深入(连载1)神经网络的拓扑

游戏编程中的人工智能技术      (连载之十三)
  • zzwu
  • zzwu
  • 2017-01-24 09:48
  • 917

微分几何、黎曼几何思想

微分几何、黎曼几何思想
  • shanyicheng1111
  • shanyicheng1111
  • 2016-12-14 09:57
  • 518

矩阵--算法--深度学习--(图像处理、机器视觉、人工智能、机器学习)资源整合

理解矩阵(一) (真是大学时候不好好学习给自己挖的坑,现在只能一点一点的补回来,这个介绍的矩阵简单易懂,非常牛) 链接如下: http://blog.csdn.net/myan/article/details/647511 (偶然在矩阵文章中发现算法的世外桃源--《算法》,非常好的一个网站) 链接...
  • u011440696
  • u011440696
  • 2016-11-30 19:44
  • 1561

人工智能学习(一种现代方法)——学习笔记(1)

在人工智能基础中谈到的神经科学讲道: 在典型的人类大脑中神经元的数目要比典型的高端计算机的CPU中的逻辑门数多1000倍。摩尔定律预测CPU的逻辑门数量在2020年左右能与大脑的神经元数量相当。当然,从这样的预测无法判断什么;而且,存储容量的差别和转换速度以及并行性方面的差别比起来就是次要的了。计...
  • loftyscholar
  • loftyscholar
  • 2011-12-17 17:19
  • 1045
    个人资料
    • 访问:554309次
    • 积分:7255
    • 等级:
    • 排名:第3682名
    • 原创:75篇
    • 转载:538篇
    • 译文:1篇
    • 评论:91条
    最新评论