关闭

快速的判断一个数是不是2,3,4的幂

标签: Leetcode
209人阅读 评论(0) 收藏 举报
分类:

1.判断是不是2的幂:
如果n是2的幂二进制中有一位是1,n-1的二进制表示中剩下的都是1
则判断用n&(n-1) 如果是0 就是2的幂

2.判断是不是4的幂:
如果n是4的幂,首先是2的幂:n&(n-1)=0
然后看是否在1的位置是不是在偶数位
n&(0x55555555) 为1 || n&(0xaaaaaaaa) 为0

3.判断是不是3的幂:
a.可以将每位加和判断是否可以被3整除
b.递归迭代除
c.此方法较为通用,分析3的幂的特点,假设一个数Num是3的幂,那么所有Num的约数都是3的幂,如果一个数n小于Num且是3的幂,那么这个数n一定是Num的约数。
了解上述性质,我们只需要找到一个最大的3的幂,看看参数n是不是此最大的幂的约数就行了

return n>0?!(1162261467 % n):0;  
 d.log函数

一个基本的事实就是如果n是3的x次方,那么以3为低对数后一定是一个整数,否则不是

class Solution {
public:
    bool isPowerOfThree(int n) {
        double res = log10(n) / log10(3);  //有精度问题,不要用以指数2.718为低的log函数
        return (res - int(res) == 0) ? true : false;
    }
};

Leetcode 326 Power of Three

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:72018次
    • 积分:2319
    • 等级:
    • 排名:第16680名
    • 原创:165篇
    • 转载:12篇
    • 译文:0篇
    • 评论:5条
    最新评论