关闭
当前搜索:

DenseImageData 数据层

1 参数 message DenseImageDataParameter { // Specify the data source file. optional string source = 1; // Specify the batch size. optional uint32 batch_size = 2; // The rand_skip variable is f...
阅读(19) 评论(0)

语义分割学习笔记(四)——ENet 训练问题

根据ENet说明https://github.com/TimoSaemann/ENet/tree/master/Tutorial ,进行训练遇到以下问题 1 No module named spatial_dropout    ENet通过python接口定义了新层spatial_dropout,根据说明直接在终端启动训练,出现“No module named spatial_dropout”...
阅读(74) 评论(0)

语义分割学习笔记(三)——SegNet Upsample层解析

1 参数设置 message UpsampleParameter { // DEPRECATED. No need to specify upsampling scale factors when // exact output shape is given by upsample_h, upsample_w parameters. optional uint32 scale = 1...
阅读(164) 评论(0)

语义分割学习笔记(二)——Windows下 Lableme 配置

1 配置 1.1 资源下载      MIT分割标定工具:http://labelme2.csail.mit.edu/Release3.0/index.php?message=1       python版本:https://github.com/wkentaro/labelme    1.2 python版本配置      首先安装Anaconda,然后运行: conda...
阅读(90) 评论(0)

语义分割学习笔记(一)——SegNet 配置与训练

1 配置 1.1 资源下载与参考  SegNet版本caffe:         https://github.com/alexgkendall/caffe-segnet           https://github.com/TimoSaemann/caffe-segnet-cudnn5 参考:       项目主页:http://mi.eng.cam.ac.uk/projects...
阅读(97) 评论(0)

2018校招——机器学习问题汇总

说明:问题主要来自牛客网面经。 LR 专题 1 讲一下逻辑回归,及优缺点 2 用代码写出LR的损失函数(目标函数),损失函数如何推导? 3 LR的优化方法及区别,梯度下降有哪几种 4 LR的思想 LR对输入和输出的分布假设 5 LR可以用来处理非线性问题么? 怎么做? 可以像SVM那样么? 为什么? 6 LR模型为什么采用似然估计? 7 LR为什么要用对数似然,不用平方损失和绝对值...
阅读(93) 评论(0)

L1 L2正则化及贝叶斯解释

1 L1正则化和L2正则化区别 L1得到的是稀疏权值,可以用于特征选择,假设参数服从Laplace分布(贝叶斯角度理解) L2得到的是平滑权值,因为所有权值都趋于最小,假设参数服从Gauss分布,(并趋于一致,因为一致时平方和,最小) 2 L1正则化稀疏解理解 2.1 问题转化 2.2 图形化解释   2.3 其他理解 2.4...
阅读(96) 评论(0)

Caffe学习笔记(九)——python接口各网络层构建

构建网络 一 数据层 1 基本说明 layer { name: "cifar" //层的名字 type: "Data" //层类型 Data表示表示数据来源于LevelDB或LMDB top: "data" //输出层 top: "label" include { //该层属于训练阶段的层 phase: TRAIN } transfor...
阅读(391) 评论(0)

caffe学习笔记(八)——binaryproto 转 npy、mat文件

主要介绍:对于caffe生成的均值文件binaryproto,在python和matlab接口使用时,如何转化为npy、mat文件。 一 转npy文件 #!/usr/bin/env python import numpy as np import caffe root = 'F:/Data/' binary_path = root + 'mean_train.binaryproto' #bi...
阅读(1378) 评论(3)

Caffe学习笔记(七)—— solver参数说明及利用自己的数据集对权值微调

本文主要介绍:在进行网络训练和权值微调过程中,需要对solver中的参数进行设置,本文主要介绍solver中的参数设置,以及如何利用自己的数据集,对权值进行微调。 1. solver参数设置 net: "train_val.prototxt" //深度学习模型的网络结构文件 test_iter: 1000 //1000指的是测试的批次,测试样本较多时,一次性执行全部数据,效率...
阅读(2834) 评论(1)

Caffe学习笔记(六)—— Windows下训练自己的数据

本文主要介绍:Windows下,根据自己的数据训练自己的网络模型。 1. 图像数据转化为lmdb格式     转化方法及过程参考 http://blog.csdn.net/hong__fang/article/details/52424690,根据训练数据和测试数据,建立两个文件名及标签txt文件,train.txt和val.txt,然后运行comput_image_mean.bat,生成两个...
阅读(7521) 评论(4)

Caffe学习笔记(五)—— 相关cpp编译及数据转成lmdb格式

本文主要介绍:Windows下,如何caffe-windows-master\tools 文件夹中的cpp进行编译和调用,以及如何把图像转化为lmdb格式。 1. 相关cpp编译 1.1 创建控制台工程       在caffe-windows-master 目录下创建空白控制台工程,编译环境设置为:Release  x64,把caffe-windows-master\tools 文...
阅读(4464) 评论(0)

Caffe学习笔记(四)——Windows 下caffe配置相关问题说明

本文主要介绍:Win10 64位系统下,再次配置caffe,遇到了一些新的问题,现对这些问题及其解决方法进行总结。 详细的安装配置过程见以前博客:Caffe学习笔记(一)——Windows 下caffe安装与配置 1. CUDA的安装问题 CUDA的安装过程可以参考CUDA 7.5 安装及配置(WIN7 64 英伟达G卡 VS2012),但参考到第九步即可,第十步及其以后的过...
阅读(8482) 评论(6)

Caffe学习笔记(三)——Matlab接口

本文主要介绍:Windows下Caffe框架的Matlab接口,即Matlab如何调用Caffe框架中的函数,进行分类、提取特征以及训练。 1 官网说明 官网:点击打开链接 2 注意事项 待续。。。...
阅读(4176) 评论(0)

Caffe学习笔记(二)——AlexNet模型

深度学习笔记 1 LeNet-5 2 1.1 局限性 2 1.2 理解 2 2 AlexNet  2.1 结构介绍 4 2.1.1 ReLU非线性 4 2.1.2 在多个GPU上训练 4 2.1.3 局部响应归一化 4 2.1.4 重叠Pooling 5 2.1.5 减少过拟合 6 2.2 总体结构 8 2.2.1 总体介绍 8 2.2.2 各层运算、维度和参数 9 2...
阅读(11097) 评论(0)
63条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:175885次
    • 积分:2114
    • 等级:
    • 排名:千里之外
    • 原创:62篇
    • 转载:1篇
    • 译文:0篇
    • 评论:45条
    最新评论