感知器的简单理解

原创 2016年06月01日 10:26:09

感知器基本概念:

  • 不断调整权值和阈值的过程称为训练
  • 训练过程中,把输入空间映射到输出空间的能力,称为学习
  • 调整权值和阈值的算法称为学习规则

感知器学习规则称为δ规则,t–目标输出,a–实际输出

e=ta
训练网络的目的就是要使误差e->0.
学习规则:
W(k+1)=W(k)+epT
b(k+1)=b(k)+e
e——误差限量
W——权值向量
b——阈值向量
p——输入向量,训练集包含大量输入向量
k——第k步学习过程
为了防止输入向量取值范围过大,导致学习时间过长,权值调整可以采用归一化的算法:
W(k+1)=W(k)+epT||p||
||p||=n1p2i
学习过程反复进行,只要网络输入模式是线性可分的,则可通过有限步,是e减小到0,即完成训练过程。


训练:

  • 输入向量有几个元素,每层的神经元数量就有几个,权值向量的元素也就有几个
  • 初始化权值向量和阈值向量均为0
  • 迭代过程若输出不等于目标输出,则按照以上公式调整权值阈值
  • 进行第n次迭代,每次从第一个样本向量开始,以前一次的权值和阈值进行计算,直到所有样本的e=0

分类完成的边界由以下边界方程决定:

n=Wp+b

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

感知器

原文在这里 感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的。感知器可谓是最早的人工神经网络。单层感知器是一个具有一层神经元、采用阈值激活函数的前向网络。通过对网络权值...

【机器学习】简单感知器

简单感知器由一个线性组合器和硬限幅器(即sgn函数,判断是正数返回1,负数返回-1)组成,线性组合器有m个输入,m个输入权值,一个偏置,图像表述如下: (Simson Haykin) 用数学方法表...

MATLAB神经网络编程(一)——感知器

《MATLAB神经网络编程》 化学工业出版社 读书笔记 第四章 前向型神经网络 4.1 感知器网络 本文是《MATLAB神经网络编程》书籍的阅读笔记,其中涉及的源码、公式、原理都来自此书,若有...

基于简单感知器的分类

基于简单感知器的分类
  • PKU_ZZY
  • PKU_ZZY
  • 2017年02月23日 13:34
  • 481

简单的感知器网络

  • 2008年05月31日 18:29
  • 52KB
  • 下载

Tensorflow自我训练进阶(代码+注解)【2】第一个神经网络--简单感知器处理MNIST

继续我们的tf~~~

机器学习基础(一)——人工神经网络与简单的感知器

机器学习基础(一)——人工神经网络与简单的感知器

简单感知器模型解决简单真值表问题

实验四 简单感知器模型 一、实验目的 1. 掌握简单感知器模型的基本原理。 2. 复习VB、VC的基本概念、基本语法和编程方法,并熟练使用VB、VC编写简单感知器模型程序。 二、实验设备 微...
  • oxoxzhu
  • oxoxzhu
  • 2012年11月04日 10:59
  • 2033

神经网络之感知器算法简单介绍和MATLAB简单实现

Perceptron Learning Algorithm感知机学习算法,在1943年被生物学家MeCulloch和数学家Pitts提出以后,面临一个问题:参数需要依靠人工经验选定,十分麻烦。因此人们...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:感知器的简单理解
举报原因:
原因补充:

(最多只允许输入30个字)