【第22期】观点:IT 行业加班,到底有没有价值?

感知器的简单理解

原创 2016年06月01日 10:26:09

感知器基本概念:

  • 不断调整权值和阈值的过程称为训练
  • 训练过程中,把输入空间映射到输出空间的能力,称为学习
  • 调整权值和阈值的算法称为学习规则

感知器学习规则称为δ规则,t–目标输出,a–实际输出

e=ta
训练网络的目的就是要使误差e->0.
学习规则:
W(k+1)=W(k)+epT
b(k+1)=b(k)+e
e——误差限量
W——权值向量
b——阈值向量
p——输入向量,训练集包含大量输入向量
k——第k步学习过程
为了防止输入向量取值范围过大,导致学习时间过长,权值调整可以采用归一化的算法:
W(k+1)=W(k)+epT||p||
||p||=n1p2i
学习过程反复进行,只要网络输入模式是线性可分的,则可通过有限步,是e减小到0,即完成训练过程。


训练:

  • 输入向量有几个元素,每层的神经元数量就有几个,权值向量的元素也就有几个
  • 初始化权值向量和阈值向量均为0
  • 迭代过程若输出不等于目标输出,则按照以上公式调整权值阈值
  • 进行第n次迭代,每次从第一个样本向量开始,以前一次的权值和阈值进行计算,直到所有样本的e=0

分类完成的边界由以下边界方程决定:

n=Wp+b

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

感知器法则

感知器以一个实数值向量作为输入,计算这些输入的线性组合,然后如果结果大于某个阈值就输出 1,否则输出-1。更精确地,如果输入为 x1 到 xn,那么感知器计算的输出为:  感知器法则 > imag...

感知器学习笔记

感知器学习笔记感知器(Perceptron) 是一种用于线性可分数据集的二类分类器算法。这种算法的局限性很大: 只能将数据分为 2 类 数据必须是线性可分的 虽然有这些局限,但是感知器是 ANN 和 ...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

各种分类算法的优缺点

1决策树(Decision Trees)的优缺点 决策树的优点: 一、           决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、      ...

各种机器学习的优缺点及应用场景

在我们日常生活中所用到的推荐系统、智能图片美化应用和聊天机器人等应用中,各种各样的机器学习和数据处理算法正尽职尽责地发挥着自己的功效。本文筛选并简单介绍了一些最常见算法类别,还为每一个类别列出了一些实...

感知器算法

感知器算法是一种用于二进制分类的监督学习算法,可以预测数字向量所表示的输入是否属于特定的类。 在机器学习的术语中,分类被认为是监督学习的实例,即,其中可观测得到正确识别的训练集,可将之用于训练学习。...

感知器算法

引例:判断一个人是否长得帅??? 有如下feature: 身高,体重,三围,颜值,学习成绩(帅的人学习成绩好的少...为何要这么一个扯淡的特征下面会讲解)等等。 假设有一个标准:每一个评分项给予多少分...

基于二次准则函数的H-K算法较之于感知器算法的优点

HK算法的思想很朴实,就是在最小均方误差准则下求得权矢量。 它相对于感知器算法的优点在于,它适用于线性可分和非线性可分的情况。 对于线性可分的情况,给出最优权矢量, 对于分线性可分的情况,能够判...

感知器算法与神经网络

感知器作为人工神经网络中最基本的单元,有多个输入和一个输出组成。虽然我们的目的是学习很多神经单元互连的网络,但是我们还是需要先对单个的神经单元进行研究。 感知器算法的主要流程:   首先得到n个输...

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势,以及解决维度效应的策略

摘要       本文介绍了在数据挖掘中数据分类的几个主要分类方法,包括:贝叶斯分类、决策树分类、感知器分类,及其各自的优势与劣势。并对于分类问题中出现的高维效应,介绍了两种通用的解决办法。 关键词...

机器学习基础(一)——人工神经网络与简单的感知器

机器学习基础(一)——人工神经网络与简单的感知器
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)