关闭

CodeForces 555E Case of Computer Network

标签: CodeForces图论
790人阅读 评论(0) 收藏 举报
分类:

题意:

n(2*10^5)个点m(2*10^5)条边的无向图  要求给无向边定向  使得最后的有向图满足q(2*10^5)个指令  每个指令表示为s->e  即s到e有通路  问  是否有可能

思路:

假设无向图中有圈  那么定向时一定也定成圈  因此想到连通分量概念  容易分析出只有桥的定向才值得讨论  因此可以先对图做边连通分量缩点

由于题中提示图可能不连通  因此得到了森林

我们要解决的就是  根据q个指令(每个指令对应一个线路  树上线路唯一)  将这些线路放在树上  如果某条树边必须保留两个方向则无解  否则有解

暴力的放置线路一定是TLE的  于是想到  对于树上的线段覆盖问题  可以通过树链剖分解决

但是剖分还是比较烦= =  于是我们采用类似线段覆盖的“头加尾减”的方法

定义up[u]表示u节点上面的那条边是向上定向的  同理down[u]  那么如果up[u]&&down[u]则边必须是双向的  现在只需要维护up和down即可  对于每个指令  可以根据s和e的lca分成两部分做“头加尾减”   最后利用树形dp求出点u的up和down  从up和down的定义中可以看出  up[u]=up[son(u)]  同理down

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std;
typedef long long LL;
#define N 200010

int n, m, q;

struct edge {
    int u, v, flag, next;
} ed[N << 1];
int head[N], tot;

int dfn[N], low[N], idx, block, sec, stack[N], top;
int vis[N], hsh[N], tree[N];
int lca[N][20], dis[N];
int up[N], down[N];

void add(int u, int v) {
    ed[tot].u = u;
    ed[tot].v = v;
    ed[tot].flag = 0;
    ed[tot].next = head[u];
    head[u] = tot++;
}

void tarjan(int u) {
    dfn[u] = low[u] = ++idx;
    stack[++top] = u;
    tree[u] = sec;
    for (int i = head[u]; ~i; i = ed[i].next) {
        int v = ed[i].v;
        if (ed[i].flag) continue;
        ed[i].flag = ed[i^1].flag = 1;
        if (dfn[v] == -1) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
            if (dfn[u] < low[v]) ed[i].flag = ed[i^1].flag = -1;
        } else low[u] = min(low[u], dfn[v]);
    }
    if (dfn[u] == low[u]) {
        block++;
        int v;
        do {
            v = stack[top--];
            hsh[v] = block;
        } while (u != v);
    }
}

void dfs(int u, int c) {
    hsh[u] = c;
    for (int i = head[u]; ~i; i = ed[i].next) {
        if (ed[i].flag == -1) continue;
        int v = ed[i].v;
        if (hsh[v] == -1) dfs(v, c);
    }
}

void init(int u, int from) {
    vis[u] = 1;
    dis[u] = dis[from] + 1;
    lca[u][0] = from;
    for (int i = 1; i < 20; i++) {
        lca[u][i] = lca[lca[u][i - 1]][i - 1];
    }
    for (int i = head[u]; ~i; i = ed[i].next) {
        int v = ed[i].v;
        if (v != from) init(v, u);
    }
}

int get(int u, int v) {
    if (dis[v] > dis[u]) swap(u, v);
    int i, tmp = dis[u] - dis[v];
    for (i = 19; tmp; i--) {
        if (tmp >= (1 << i)) {
            tmp -= (1 << i);
            u = lca[u][i];
        }
    }
    if (u == v) return u;
    for (i = 19; i >= 0; i--) {
        if (lca[u][i] != lca[v][i]) {
            u = lca[u][i];
            v = lca[v][i];
        }
    }
    return lca[u][0];
}

bool ok(int u) {
    vis[u] = 0;
    for (int i = head[u]; ~i; i = ed[i].next) {
        int v = ed[i].v;
        if (vis[v]) {
            if (!ok(v)) return false;
            up[u] += up[v];
            down[u] += down[v];
        }
    }
    return !(up[u] && down[u]);
}

int main() {
    memset(head, -1, sizeof (head));
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= m; i++) {
        int u, v;
        scanf("%d%d", &u, &v);
        add(u, v);
        add(v, u);
    }
    memset(dfn, -1, sizeof (dfn));
    for (int i = 1; i <= n; i++) {
        if (dfn[i] == -1) {
            sec++;
            tarjan(i);
        }
    }
    int tmp = tot;
    tot = 0;
    memset(head, -1, sizeof (head));
    for (int i = 0; i < tmp; i++) {
        if (ed[i].flag == -1 && hsh[ed[i].u] != hsh[ed[i].v]) {
            add(hsh[ed[i].u], hsh[ed[i].v]);
        }
    }
    n = block;
    for (int i = 1; i <= n; i++) {
        if (!vis[i]) init(i, i);
    }
    bool ans = true;
    for (int i = 1; i <= q; i++) {
        int u, v;
        scanf("%d%d", &u, &v);
        if (tree[u] != tree[v]) {
            puts("No");
            return 0;
        }
        u = hsh[u];
        v = hsh[v];
        if (u != v) {
            int fa = get(u, v);
            up[u]++;
            up[fa]--;
            down[v]++;
            down[fa]--;
        }
    }
    for (int i = 1; i <= n; i++) {
        if (vis[i]) {
            ans = ok(i);
            if (!ans) break;
        }
    }
    if (ans) puts("Yes");
    else puts("No");
    return 0;
}


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

解决VPS经SS访问Google Schoolar受限

引言近日搭建好VPS和ShadowSocks环境后,用google搜索到几篇文章,结果却发现访问Google Schoolar总是提示如下信息:We're sorry... but your comp...
  • lm409
  • lm409
  • 2017-06-24 10:37
  • 4379

【codeforces 732E】【贪心 map乱搞】

传送门:http://codeforces.com/contest/732/problem/E 描述: E. Sockets time limit per t...
  • guhaiteng
  • guhaiteng
  • 2016-10-22 15:32
  • 541

整理《Mastering OpenCV with Practical Computer Vision Projects》中第5章用SVM和神经网络进行车牌识别操作流程

ANPR(Automatic Number Plate Recognition) is divided in two main steps: plate detection and plate rec...
  • fengbingchun
  • fengbingchun
  • 2013-03-12 15:15
  • 5241

codeforces上一种应对大测试数据debug方法

接触codeforces时间不长,也就参加了10场左右。之前有次比赛就出现了wa了一道题,在比赛结束后看测试数据log时,发现出错的那组用例是个超过一万行输入的情况,codeforces上的测试数据无...
  • qq_29070399
  • qq_29070399
  • 2017-02-03 16:09
  • 760

关于codeforces比赛规则介绍(转载)

Codeforces 简称: cf(所以谈论cf的时候经常被误会成TX的那款游戏). 网址: codeforces.com   这是一个俄国的算法竞赛网站,由来自萨拉托夫州立大学、由Mike Mirz...
  • y990041769
  • y990041769
  • 2014-02-19 08:41
  • 15544

【Computer Vision】计算机视觉相关课程和书籍

Table of Contents BooksCoursesPapersSoftwareDatasetsTutorials and TalksResources for studentsBlog...
  • j_d_c
  • j_d_c
  • 2017-03-16 09:22
  • 1455

python爬虫抓取codeforces分数

环境介绍 python 2.7.2 re 正则表达式库 urllib2 代码#coding:utf8 import sys import urllib2,redef getrating(name): ...
  • qscqesze
  • qscqesze
  • 2016-11-17 22:02
  • 464

【Matlab Computer Vision System ToolBox】学习笔记-1-点云配准流程 | 特征匹配

本系列博客将介绍Matlab中机器视觉工具箱的应用,更多内容见Matlab官方文档。 1. PointCloud Registration Workflow -点云配准流程 2. Bluran ...
  • kaspar1992
  • kaspar1992
  • 2017-02-02 16:48
  • 3067

Codeforces 708D 费用流 (呃我们的考试题)

NB的题目背景 输入输出一样考试的时候貌似只有gzz一个人搞出来了 %gzz思路: 分情况讨论 add(x,y,C,E) C是费用 E是流量 1. f>c add(x,y,2,inf),...
  • qq_31785871
  • qq_31785871
  • 2017-01-05 17:56
  • 727

【Codeforces708C】【树形dp】【贪心】Centroids

Centroids Time Limit: 4000MS Memory Limit: 524288KB 64bit IO Format: %I64d & %I64u ...
  • u011327397
  • u011327397
  • 2016-10-14 11:24
  • 423
    个人资料
    • 访问:188428次
    • 积分:4664
    • 等级:
    • 排名:第7254名
    • 原创:285篇
    • 转载:1篇
    • 译文:0篇
    • 评论:44条
    文章分类
    最新评论