建议13: 为类型输出格式化字符串(1)

本文介绍两种为C#类型提供格式化字符串输出的方法:一是让类型实现IFormattable接口,二是为类型创建定制化的格式化器。通过示例展示如何根据不同场景输出不同格式的字符串。

建议13: 为类型输出格式化字符串(1)

有两种方法可以为类型提供格式化的字符串输出。一种是意识到类型会产生格式化字符串输出,于是让类型继承接口IFormattable。这对类型来说,是一种主动实现的方式,要求开发者可以预见类型在格式化方面的要求。更多的时候,类型的使用者需为类型自定义格式化器,这就是第二种方法,也是最灵活多变的方法,可以根据需求的变化为类型提供多个格式化器。下面就来详细介绍这两种方法。

最简单的字符串输出是为类型重写ToString方法,如果没有为类型重写该方法,默认会调用Object的ToString方法,它会返回当前类型的类型名称。但即使是重写了ToString方法,提供的字符串输出也是非常单一的,而通过实现IFormattable接口的ToString方法,可以让类型根据用户的输入而格式化输出。如下面这个类型Person,它本身提供了属性FirstName和LastName。现在,根据中文和英文语言地区的习惯,提供的ToString方法要支持输出“Hu Jessica”或 “Jessica Hu”,实现代码应该如下所示:

  1. class Person : IFormattable  
  2. {  
  3.     public string IDCode { get; set; }  
  4.     public string FirstName { get; set; }  
  5.     public string LastName { get; set; }  
  6.  
  7.     //实现接口IFormattable的方法ToString  
  8.     public string ToString(string format, IFormatProvider formatProvider)  
  9.     {  
  10.         switch (format)  
  11.         {  
  12.             case "Ch":  
  13.                 return this.ToString();  
  14.             case "Eg":  
  15.                 return string.Format("{0} {1}", FirstName, LastName);  
  16.             default:  
  17.                 return this.ToString();  
  18.         }  
  19.     }  
  20.  
  21.     //重写Object.ToString()  
  22.     public override string ToString()  
  23.     {  
  24.         return string.Format("{0} {1}", LastName, FirstName);  
  25.     }  

调用者代码如下所示:

  1. Person person = new Person() { FirstName = "Jessica"LastName = "Hu",  
  2.     IDCode = "NB123" };  
  3. Console.WriteLine(person);  
  4. Console.WriteLine(person.ToString("Ch", null));  
  5. Console.WriteLine(person.ToString("Eg", null)); 

输出为:
  1. Hu Jessica  
  2. Hu Jessica  
  3. Jessica Hu 

上面这种方法是在意识到类型会存在格式化字符串输出方面的需求时,提前为类型继承了接口IFormattable。如果类型本身没有提供格式化输出的功能,这个时候,格式化器就派上了用场。格式化器的好处就是可以根据需求的变化,随时增加或者修改它。假设Person类如以下所示的实现。
  1. class Person  
  2. {  
  3.     public string IDCode { get; set; }  
  4.     public string FirstName { get; set; }  
  5.     public string LastName { get; set; }  

针对Person的格式化器的实现为:
  1. class PersonFomatter : IFormatProvider, ICustomFormatter  
  2. {  
  3.  
  4.     #region IFormatProvider 成员  
  5.  
  6.     public object GetFormat(Type formatType)  
  7.     {  
  8.         if (formatType == typeof(ICustomFormatter))  
  9.             return this;  
  10.         else  
  11.             return null;  
  12.     }  
  13.  
  14.     #endregion  
  15.  
  16.     #region ICustomFormatter 成员  
  17.  
  18.     public string Format(string format, object arg,  
  19.         IFormatProvider formatProvider)  
  20.     {  
  21.         Person person = arg as Person;  
  22.         if (person == null)  
  23.         {  
  24.             return string.Empty;  
  25.         }  
  26.  
  27.         switch (format)  
  28.         {  
  29.             case "Ch":  
  30.                 return string.Format("{0} {1}", person.LastName,  
  31.                     person.FirstName);  
  32.             case "Eg":  
  33.                 return string.Format("{0} {1}", person.FirstName,  
  34.                     person.LastName);  
  35.             case "ChM":  
  36.                 return string.Format("{0} {1} : {2}", person.LastName,  
  37.                     person.FirstName, person.IDCode);  
  38.             default:  
  39.                 return string.Format("{0} {1}", person.FirstName,  
  40.                     person.LastName);  
  41.         }  
  42.     }  
  43.  
  44.     #endregion  

转自:《编写高质量代码改善C#程序的157个建议》陆敏技

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值