求两个整数的最大公约数。
1质因数分解法。
分别将两个数分解成若干质因数的乘积,再比较最大公约数。——大数的质因数很难分解。
2更相减损术。
《九章算术》——以少减多,更相减损,求其等也,以等数约之。等数约之,即除也,其所以相减者皆等数之重叠,故以等数约之。
(big,small)——> c=big-small ——>把c和small比较得到(big2,small2)——>如果big2/small2 余数是0,则small2就是所求的最大公约数
3欧几里得的辗转相除法。
是现代版的更相减损法,(big,small)——> c=big%small ——>把c和small比较得到(big2,small2)——>如果c=0,则small2就是所求的最大的公约数