【JZOJ 4638】第三条跑道

本文介绍了一种利用线段树结合欧拉函数解决特定数论问题的方法。通过预处理质数并构建线段树,实现了区间乘积的快速查询及区间更新操作。适用于涉及大量区间查询和修改的问题。

Description

这里写图片描述

这里写图片描述

抽象题意:给出一个的序列,求ri=lφ(ai),同时兹瓷修改。

Solution

很显然,600以内的质数不会很多,只有109个。
那直接开110棵线段树即可,
每次的修改和维护直接运用欧拉函数的性质即可。
复杂度:O(n109log(n))

Code

#include<iostream>
#include<cstdio>
#include<cstdlib>
#define foi(i,a,b) for(i=a;i<=b;i++)
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
const int N=10050,mo=1e8+7;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int m,n;
int bb[N];
int Ss[N],pr[N];
int b[N*4][120],la[N*4][120];
LL b0[N*4];
int fs[700][700][2];
void fk(int q)
{
    fill(Ss,Ss+1+pr[0],0);
    if(q==1)return;
    fo(i,1,pr[0])if(q%pr[i]==0)
    {
        Ss[0]++;
        while(q%pr[i]==0)Ss[i]++,q/=pr[i];
        if(q==1)break;
    }
}
LL ksm(LL q,LL w)
{
    LL ans=1;
    while(w)
    {
        if(w&1)ans=ans*q%mo;
        q=q*q%mo;w>>=1;
    }
    return ans;
}
void merge(int e,int q,int w)
{
    b0[e]=b0[q]*b0[w]%mo;
    fo(i,1,pr[0])b[e][i]=b[q][i]+b[w][i];
}
void build(int l,int r,int e)
{
    if(l==r)
    {
        fk(bb[l]);
        b0[e]=1;
        fo(i,1,pr[0])if(Ss[i])b[e][i]=1,b0[e]=b0[e]*(pr[i]-1)%mo*ksm(pr[i],Ss[i]-1)%mo;
        return;
    }
    int t=(l+r)>>1;
    build(l,t,e*2),build(t+1,r,e*2+1);
    merge(e,e*2,e*2+1);
}
void doit(int l,int r,int e)
{
    if(!la[e][0])return;
    fo(i,1,pr[0])if(la[e][i])
    {
        b0[e]=b0[e]*ksm(pr[i],b[e][i])%mo*ksm(pr[i]-1,r-l+1-b[e][i])%mo*ksm(pr[i],(r-l+1)*(la[e][i]-1))%mo;
        b[e][i]=r-l+1;
        if(l!=r)la[e*2][i]+=la[e][i],la[e*2+1][i]+=la[e][i],la[e*2][0]=la[e*2+1][0]=1;
        la[e][i]=0;
    }
    la[e][0]=0;
}
LL find(int l,int r,int e,int l1,int r1)
{
    if(l==l1&&r==r1){return b0[e];}
    int t=(l+r)/2;
    doit(l,t,e*2);
    doit(t+1,r,e*2+1);
    LL ans;
    if(r1<=t)ans=find(l,t,e*2,l1,r1);
        else if(t<l1)ans=find(t+1,r,e*2+1,l1,r1);
            else ans=find(l,t,e*2,l1,t)*find(t+1,r,e*2+1,t+1,r1)%mo;
    merge(e,e*2,e*2+1);     
    return ans;
}
void change(int l,int r,int e,int l1,int r1)
{
    if(l==l1&&r==r1)
    {   
        la[e][0]=1;
        fo(i,1,pr[0])la[e][i]=Ss[i];
        doit(l,r,e);
        return;
    }
    int t=(l+r)/2;
    doit(l,t,e*2),doit(t+1,r,e*2+1);
    if(r1<=t)change(l,t,e*2,l1,r1);
        else if(t<l1)change(t+1,r,e*2+1,l1,r1);
            else change(l,t,e*2,l1,t),change(t+1,r,e*2+1,t+1,r1);
    merge(e,e*2,e*2+1);
}
int main()
{
    int q,w,_,l,r;
    pr[0]=1;pr[1]=2;
    fo(i,3,601)
    {
        fk(i);
        if(!Ss[0])pr[++pr[0]]=i;
        fo(j,1,pr[0])
            if(Ss[j])fs[i][++fs[i][0][0]][0]=j,fs[i][fs[i][0][0]][1]=Ss[j];
    }
    read(n);
    fo(i,1,n)read(bb[i]);
    build(1,n,1);
    read(_);
    while(_--)
    {
        read(w),read(l),read(r);
        if(w)printf("%lld\n",find(1,n,1,l,r));
            else 
            {
                read(q);fk(q);
                change(1,n,1,l,r);
            }
    }
    return 0;
}
【源码免费下载链接】:https://renmaiwang.cn/s/evt66 在Linux操作系统中,内核是系统的核心,负责管理和调度硬件资源,为用户空间的应用程序提供服务。修改Linux内核代码是一项复杂且高级的任务,通常由经验丰富的开发者进行,旨在优化性能、添加新功能或修复已知问题。在这个过程中,我们通常会涉及到驱动程序开发、系统调用接口、内存管理、进程调度等多个核心领域。以下是对这个主题的详细讨论:1. **理解内核结构**:你需要了解Linux内核的基本架构,包括模块化设计、进程管理、内存管理、中断处理、文件系统和网络协议栈等。这将帮助你找到正确的代码位置进行修改。2. **获取源代码**:从官方网站(https://kernel.org/)获取最新的Linux内核源代码,或者从Git仓库如git.kernel.org获取特定版本的代码。3. **编译环境搭建**:设置一个合适的开发环境,包括安装必要的编译工具(如GCC、Make、Perl等),以及配置交叉编译环境(如果要在不同的硬件平台上运行)。4. **定位代码**:根据你的需求,找到相应的源文件进行修改。在这个例子中,`prinfo.c`可能是一个包含自定义打印信息的函数或结构体的实现,`prinfo_test.c`可能是对其进行测试的代码,而`prinfo.h`则可能包含了相关的头文件声明。5. **代码修改**:对找到的源文件进行修改。这可能涉及到修改函数逻辑、增加新的功能、优化现有代码或修复bug。确保遵循Linux内核编码规范,比如使用K&R风格的括号,注释清晰,遵守命名规则等。6. **编写测试**:修改内核代码后,编写或更新测试用例至关重要。`prinfo_test.c`很可能是这样的测试用例,确保你的改动没有引入新的错误。7. **编译与调试**:使用`make`命令编译内核,并通过`mak
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值