差分进化算法DE

差分进化算法DE属于进化算法,这里算法还包括依次遗传算法、进化策略、进化规划。

差分进化算法包括三个基本的操作:变异操作、交叉(重组)操作和选择操作

这里写图片描述

一、算法建模:

1、假设我们希望得到函数f(x)的最优解,这个函数有D个解。
2、为函数f(x)设置一个解的组数N,N至少为4。
3、这样我们就得到了N组并且每组解的个数为D的集合,它可以使用N个D维参数向量来表示。
这里写图片描述
因为它类似于遗传算法进化一样,是一代一代的进行进化,最终得到最优个体。所以上面G表示的就是代数。

形象表示如下:
这里写图片描述

二、初始化

为每个参数定义上界和下界
这里写图片描述
在上面的范围内随机的为每个参数取值。这样就得到了一个N组初始解。

三、变异
这里写图片描述

上面有N组解,对于一组给定的解X(i,G)随机的从这N组解中选择三组解X(r1,G),X(r2,G),X(r3,G),r1,r2,r3分别代表组的索引,G表示代数,从第一代开始。

使用下面变异策略进行变异:
这里写图片描述

其中,F是变异因子,位于[0,2]之间。这样我们就可以得到一组新的解。

这里写图片描述

四、交叉

下面我们就会对得到的这组新解进行交叉操作了。

这里写图片描述

CR是交叉概率,处于[0, 1]之间。

这里写图片描述

五、选择

从上面可以得到一组进化之后的解,为了决定这组解是否成为G+1代中的解,需要将这组新解跟原来那组解的适应度值进行比较,如果优于原来那组解则将它们替换掉,否则保留原来解。适应度值得计算使用的就是适应度函数f(x)。这个函数需要我们之前进行确定。

这里写图片描述

整个过程的流程图如下:

这里写图片描述

这里写图片描述

  • 6
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: DE(Differential Evolution,差分进化)算法是一种常用的全局优化算法,其基本思想是利用种群中个体的差异性进行搜索。 以下是使用Python实现DE算法的完整代码: ```python import numpy as np class DE: def __init__(self, func, bounds, npop, F=0.8, CR=0.9, maxiter=1000, tol=1e-6): """ :param func: 目标函数 :param bounds: 参数边界 :param npop: 种群数量 :param F: 缩放因子 :param CR: 交叉概率 :param maxiter: 最大迭代次数 :param tol: 收敛容差 """ self.func = func self.bounds = bounds self.npop = npop self.F = F self.CR = CR self.maxiter = maxiter self.tol = tol def optimize(self): nparams = len(self.bounds) # 初始化种群 pop = np.random.rand(self.npop, nparams) for i in range(nparams): pop[:, i] = self.bounds[i][0] + pop[:, i] * (self.bounds[i][1] - self.bounds[i][0]) # 计算初始适应度 fitness = np.array([self.func(p) for p in pop]) # 记录最优解 best_params = pop[np.argmin(fitness)] best_fitness = np.min(fitness) # 开始迭代 for i in range(self.maxiter): new_pop = np.zeros((self.npop, nparams)) for j in range(self.npop): # 随机选择3个个体 idxs = np.random.choice(self.npop, 3, replace=False) x1, x2, x3 = pop[idxs] # 生成变异个体 v = x1 + self.F * (x2 - x3) # 交叉操作 u = np.zeros(nparams) jrand = np.random.randint(nparams) for k in range(nparams): if np.random.rand() < self.CR or k == jrand: u[k] = v[k] else: u[k] = pop[j, k] # 边界处理 u = np.clip(u, self.bounds[:, 0], self.bounds[:, 1]) # 选择操作 new_fitness = self.func(u) if new_fitness < fitness[j]: new_pop[j] = u fitness[j] = new_fitness if new_fitness < best_fitness: best_params = u best_fitness = new_fitness else: new_pop[j] = pop[j] # 判断是否收敛 if np.max(np.abs(new_pop - pop)) < self.tol: break pop = new_pop return best_params, best_fitness ``` 使用方法: ```python # 定义目标函数 def func(x): return np.sum(x ** 2) # 定义参数边界 bounds = np.array([[-5.12, 5.12]] * 10) # 定义DE算法对象 de = DE(func, bounds, npop=50, F=0.8, CR=0.9, maxiter=1000, tol=1e-6) # 开始优化 best_params, best_fitness = de.optimize() # 输出最优解和最优适应度 print("最优解:", best_params) print("最优适应度:", best_fitness) ``` 注:上述代码中的目标函数为简单的二次函数,实际使用时需要根据具体问题定义相应的目标函数。 ### 回答2: DE(差分进化)算法是一种全局优化算法,用于解决连续优化问题。其完整的代码如下所示: 1. 导入所需的Python库: ```python import random import numpy as np ``` 2. 定义DE算法的主要函数: ```python def differential_evolution(cost_func, bounds, pop_size, F, CR, max_iter): # 初始化种群 n_params = len(bounds) population = np.zeros((pop_size, n_params)) for i in range(pop_size): for j in range(n_params): population[i, j] = random.uniform(bounds[j][0], bounds[j][1]) # 迭代优化 for i in range(max_iter): for j in range(pop_size): # 选择三个不同的个体 candidates = [k for k in range(pop_size) if k != j] a, b, c = random.sample(candidates, 3) # 生成新个体 mutant = population[a] + F * (population[b] - population[c]) mutant = np.clip(mutant, bounds[:, 0], bounds[:, 1]) # 交叉操作 cross_points = np.random.rand(n_params) < CR if not np.any(cross_points): cross_points[np.random.randint(0, n_params)] = True trial = np.where(cross_points, mutant, population[j]) # 评估新个体的适应度 cost_trial = cost_func(trial) cost_current = cost_func(population[j]) # 更新种群 if cost_trial < cost_current: population[j] = trial # 返回最优个体和最优适应度 best_index = np.argmin([cost_func(ind) for ind in population]) best_individual = population[best_index] best_fitness = cost_func(best_individual) return best_individual, best_fitness ``` 3. 定义一个优化问题的目标函数,示例为Rastringin函数: ```python def rastringin(x): return sum([(xi**2 - 10 * np.cos(2 * np.pi * xi) + 10) for xi in x]) ``` 4. 设置问题的边界和其他参数: ```python bounds = [(-5.12, 5.12)] * 10 # 问题的边界 pop_size = 50 # 种群大小 F = 0.5 # 缩放因子 CR = 0.7 # 交叉概率 max_iter = 100 # 最大迭代次数 ``` 5. 调用DE算法进行优化,得到最优解和最优适应度: ```python best_individual, best_fitness = differential_evolution(rastringin, bounds, pop_size, F, CR, max_iter) print("最优解:", best_individual) print("最优适应度:", best_fitness) ``` 这段代码实现了DE算法的基本框架和一个示例目标函数的优化。可以根据实际问题进行适当的修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值