HDU 1272--小希的迷宫【并查集,有值得注意的地方】

本文介绍了一个迷宫设计验证算法,使用并查集确保迷宫中任意两点间仅有一条路径。探讨了递归与非递归路径压缩方法,并考虑了深度优化。

小希的迷宫

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 34205    Accepted Submission(s): 10464


Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。

 

Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
 

Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
 

Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
 

Sample Output
Yes Yes No
 
个人感觉并查集的优化有两种
(1) 路径压缩 (递归,非递归,非递归的快些)
(2)用ran 记录两个树的深度,深度小的挂在深度大的下面,即使路径压缩的过程中可能会改变树的深度, 但我们也不修改 ran 的值


第一种方法:递归路径压缩, 没有记录深度。

这样写直接 Runtime Error(STACK_OVERFLOW) 递归太多次数 

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 100000 + 100

int per[maxn];
int vis[maxn];
int flag;

int find(int x) {
    if( x == per[x])
        return x;
    return per[x] = find(per[x]);
}

void jion (int a, int b){
    int fa = find(a);
    int fb = find(b);
    if(fa != fb)
        per[fa] = fb; //per[fb] = fa ,这样写就可以过,应该是数据的问题

    else
        flag = 0;
}


int main (){
    int a, b;
    while(scanf("%d%d", &a, &b) != EOF){
        if(a == -1 && b == -1)
            break;
        if(a == 0 && b == 0){
            printf("Yes\n");
            continue;
        }
        for(int i = 1; i <= 100000; ++i){
            per[i] = i;
            vis[i] = 0;
        }
        vis[a] = 1, vis[b] = 1;
        flag = 1;
        jion(a, b);
        while(scanf("%d%d", &a, &b), a || b){
            vis[a] = 1;//并不是所有的房间都用到了,所以需要标记一下
            vis[b] = 1;
            jion(a, b);
        }
        int ans = 0;
        for(int i = 1; i <= 100000; ++i){
            if(per[i] == i && vis[i])
                ans++;
            if(ans > 1){
                flag = 0;
                break;
            }
        }
        if(flag) printf("Yes\n");
        else printf("No\n");

    }
    return 0;
}


第二种方法:非递归路径压缩, 没有记录深度。非递归压缩路径有两种方式,应该都可以。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 100000 + 100

int per[maxn];
int vis[maxn];
int flag;

int find(int x) {

//方法一 : 
//    int r = x;
//    while(r != per[r])
//        r = per[r];
//    int i,j;
//    i = x;
//    while(i != r){
//        j = per[i];
//        per[i] = r;
//        i = j;
//    }
//    return r;
//方法二:
    while(r != per[r])
        r = per[r];
    per[x] = r;
    return r;
}

void jion (int a, int b){
    int fa = find(a);
    int fb = find(b);
    if(fb != fa)
        per[fb] = fa;

    else
        flag = 0;
}


int main (){
    int a, b;
    while(scanf("%d%d", &a, &b) != EOF){
        if(a == -1 && b == -1)
            break;
        if(a == 0 && b == 0){
            printf("Yes\n");
            continue;
        }
        for(int i = 1; i <= 100000; ++i){
            per[i] = i;
            vis[i] = 0;
        }
        vis[a] = 1, vis[b] = 1;
        flag = 1;
        jion(a, b);
        while(scanf("%d%d", &a, &b), a || b){
            vis[a] = 1;//并不是所有的房间都用到了,所以需要标记一下
            vis[b] = 1;
            jion(a, b);
        }
        int ans = 0;
        for(int i = 1; i <= 100000; ++i){
            if(per[i] == i && vis[i])
                ans++;
            if(ans > 1){
                flag = 0;
                break;
            }
        }
        if(flag) printf("Yes\n");
        else printf("No\n");

    }
    return 0;
}
第三种方法:递归路径压缩, 记录深度优化

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 100000 + 100

int per[maxn];
int vis[maxn];
int flag;
int ran[maxn];

int find(int x) {
    if( x == per[x])
        return x;
    return per[x] = find(per[x]);
}

void jion (int a, int b){
    int fa = find(a);
    int fb = find(b);
    if(fb != fa){
        if(ran[fa]  < ran[fb]){
            per[fa] = fb;
        }
        else{
            per[fb] = fa;
            if(ran[fa] == ran[fb]) ran[fa]++;
        }
    }
    else
        flag = 0;
}


int main (){
    int a, b;
    while(scanf("%d%d", &a, &b) != EOF){
        if(a == -1 && b == -1)
            break;
        if(a == 0 && b == 0){
            printf("Yes\n");
            continue;
        }
        for(int i = 1; i <= 100000; ++i){
            per[i] = i;
            vis[i] = 0;
            ran[i] = 0;
        }
        vis[a] = 1, vis[b] = 1;
        flag = 1;
        jion(a, b);
        while(scanf("%d%d", &a, &b), a || b){
            vis[a] = 1;//并不是所有的房间都用到了,所以需要标记一下
            vis[b] = 1;
            jion(a, b);
        }
        int ans = 0;
        for(int i = 1; i <= 100000; ++i){
            if(per[i] == i && vis[i])
                ans++;
            if(ans > 1){
                flag = 0;
                break;
            }
        }
        if(flag) printf("Yes\n");
        else printf("No\n");

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值