小希的迷宫
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 34205 Accepted Submission(s): 10464
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。


Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
个人感觉并查集的优化有两种
(1) 路径压缩 (递归,非递归,非递归的快些)
(2)用ran 记录两个树的深度,深度小的挂在深度大的下面,即使路径压缩的过程中可能会改变树的深度, 但我们也不修改 ran 的值
第一种方法:递归路径压缩, 没有记录深度。
这样写直接 Runtime Error(STACK_OVERFLOW) 递归太多次数
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 100000 + 100
int per[maxn];
int vis[maxn];
int flag;
int find(int x) {
if( x == per[x])
return x;
return per[x] = find(per[x]);
}
void jion (int a, int b){
int fa = find(a);
int fb = find(b);
if(fa != fb)
per[fa] = fb; //per[fb] = fa ,这样写就可以过,应该是数据的问题
else
flag = 0;
}
int main (){
int a, b;
while(scanf("%d%d", &a, &b) != EOF){
if(a == -1 && b == -1)
break;
if(a == 0 && b == 0){
printf("Yes\n");
continue;
}
for(int i = 1; i <= 100000; ++i){
per[i] = i;
vis[i] = 0;
}
vis[a] = 1, vis[b] = 1;
flag = 1;
jion(a, b);
while(scanf("%d%d", &a, &b), a || b){
vis[a] = 1;//并不是所有的房间都用到了,所以需要标记一下
vis[b] = 1;
jion(a, b);
}
int ans = 0;
for(int i = 1; i <= 100000; ++i){
if(per[i] == i && vis[i])
ans++;
if(ans > 1){
flag = 0;
break;
}
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}第二种方法:非递归路径压缩, 没有记录深度。非递归压缩路径有两种方式,应该都可以。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 100000 + 100
int per[maxn];
int vis[maxn];
int flag;
int find(int x) {
//方法一 :
// int r = x;
// while(r != per[r])
// r = per[r];
// int i,j;
// i = x;
// while(i != r){
// j = per[i];
// per[i] = r;
// i = j;
// }
// return r;
//方法二:
while(r != per[r])
r = per[r];
per[x] = r;
return r;
}
void jion (int a, int b){
int fa = find(a);
int fb = find(b);
if(fb != fa)
per[fb] = fa;
else
flag = 0;
}
int main (){
int a, b;
while(scanf("%d%d", &a, &b) != EOF){
if(a == -1 && b == -1)
break;
if(a == 0 && b == 0){
printf("Yes\n");
continue;
}
for(int i = 1; i <= 100000; ++i){
per[i] = i;
vis[i] = 0;
}
vis[a] = 1, vis[b] = 1;
flag = 1;
jion(a, b);
while(scanf("%d%d", &a, &b), a || b){
vis[a] = 1;//并不是所有的房间都用到了,所以需要标记一下
vis[b] = 1;
jion(a, b);
}
int ans = 0;
for(int i = 1; i <= 100000; ++i){
if(per[i] == i && vis[i])
ans++;
if(ans > 1){
flag = 0;
break;
}
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}第三种方法:递归路径压缩, 记录深度优化
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 100000 + 100
int per[maxn];
int vis[maxn];
int flag;
int ran[maxn];
int find(int x) {
if( x == per[x])
return x;
return per[x] = find(per[x]);
}
void jion (int a, int b){
int fa = find(a);
int fb = find(b);
if(fb != fa){
if(ran[fa] < ran[fb]){
per[fa] = fb;
}
else{
per[fb] = fa;
if(ran[fa] == ran[fb]) ran[fa]++;
}
}
else
flag = 0;
}
int main (){
int a, b;
while(scanf("%d%d", &a, &b) != EOF){
if(a == -1 && b == -1)
break;
if(a == 0 && b == 0){
printf("Yes\n");
continue;
}
for(int i = 1; i <= 100000; ++i){
per[i] = i;
vis[i] = 0;
ran[i] = 0;
}
vis[a] = 1, vis[b] = 1;
flag = 1;
jion(a, b);
while(scanf("%d%d", &a, &b), a || b){
vis[a] = 1;//并不是所有的房间都用到了,所以需要标记一下
vis[b] = 1;
jion(a, b);
}
int ans = 0;
for(int i = 1; i <= 100000; ++i){
if(per[i] == i && vis[i])
ans++;
if(ans > 1){
flag = 0;
break;
}
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}

本文介绍了一个迷宫设计验证算法,使用并查集确保迷宫中任意两点间仅有一条路径。探讨了递归与非递归路径压缩方法,并考虑了深度优化。
11万+

被折叠的 条评论
为什么被折叠?



