Logistic Regression(逻辑回归)原理及公式推导

版权声明:本文为原创文章:http://blog.csdn.net/programmer_wei/article/details/52072939

Logistic Regression(逻辑回归)是机器学习中一个非常非常常见的模型,在实际生产环境中也常常被使用,是一种经典的分类模型(不是回归模型)。本文主要介绍了Logistic Regression(逻辑回归)模型的原理以及参数估计、公式推导方法。


模型构建

在介绍Logistic Regression之前我们先简单说一下线性回归,,线性回归的主要思想就是通过历史数据拟合出一条直线,用这条直线对新的数据进行预测,线性回归可以参考我之前的一篇文章。

我们知道,线性回归的公式如下: 

z=θ0+θ1x1+θ2x2+θ3x3...+θnxn=θTxz=θ0+θ1x1+θ2x2+θ3x3...+θnxn=θTx

而对于Logistic Regression来说,其思想也是基于线性回归(Logistic Regression属于广义线性回归模型)。其公式如下: 

hθ(x)=11+ez=11+eθTxhθ(x)=11+e−z=11+e−θTx

其中,
y=11+exy=11+e−x
被称作 sigmoid 函数,我们可以看到,Logistic Regression算法是将线性函数的结果映射到了sigmoid函数中。

sigmoid的函数图形如下: 
这里写图片描述

我们可以看到,sigmoid的函数输出是介于(0,1)之间的,中间值是0.5,于是之前的公式 hθ(x)hθ(x)的含义就很好理解了,因为 hθ(x)hθ(x) 输出是介于(0,1)之间,也就表明了数据属于某一类别的概率,例如 : 
hθ(x)hθ(x)<0.5 则说明当前数据属于A类; 
hθ(x)hθ(x)>0.5 则说明当前数据属于B类。 
所以我们可以将sigmoid函数看成样本数据的概率密度函数。

有了上面的公式,我们接下来需要做的就是怎样去估计参数 θθ 了。

首先我们来看, θθ 函数的值有特殊的含义,它表示 hθ(x)hθ(x) 结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为: 

P(y=1|x;θ)=hθ(x)P(y=1|x;θ)=hθ(x)

P(y=0|x;θ)=1hθ(x)P(y=0|x;θ)=1−hθ(x)

极大似然估计

根据上式,接下来我们可以使用概率论中极大似然估计的方法去求解损失函数,首先得到概率函数为: 

P(y|x;θ)=(hθ(x))y(1hθ(x))1yP(y|x;θ)=(hθ(x))y∗(1−hθ(x))1−y

因为样本数据(m个)独立,所以它们的联合分布可以表示为各边际分布的乘积,取似然函数为: 
L(θ)=i=1mP(y(i)|x(i);θ)L(θ)=∏i=1mP(y(i)|x(i);θ)

L(θ)=i=1m(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)L(θ)=∏i=1m(hθ(x(i)))y(i)∗(1−hθ(x(i)))1−y(i)

取对数似然函数: 
l(θ)=log(L(θ))=i=1mlog((hθ(x(i)))y(i))+log((1hθ(x(i)))1y(i))l(θ)=log(L(θ))=∑i=1mlog((hθ(x(i)))y(i))+log((1−hθ(x(i)))1−y(i))

l(θ)=log(L(θ))=i=1my(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))l(θ)=log(L(θ))=∑i=1my(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i)))

最大似然估计就是要求得使 l(θ)l(θ) 取最大值时的 θθ ,这里可以使用梯度上升法求解。我们稍微变换一下: 

J(θ)=1ml(θ)J(θ)=−1ml(θ)

因为乘了一个负的系数 1m−1m ,然后就可以使用梯度下降算法进行参数求解了。梯度下降具体就不在这里多说了,可以参考之前的 文章。

参考文章: 
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=9162199&id=4223505 
http://blog.csdn.net/wangran51/article/details/8892923



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值