关闭

nyoj 451 光棍节快乐

标签: c
1033人阅读 评论(0) 收藏 举报
分类:
全错排列问题,最早是由欧拉给出的答案.我们不妨设N个人的拿法为f(N),则f(N)=(N-1)[f(N-1)+f(N-2)].f(0)=0,f(1)=1.这个递推公式是很容易证明的.
证明如下:
设N个人为a,b,c,d...,N张卡为A,B,C,D...
若a拿b的卡B,b也拿a的卡A,则显然只剩下N-2个人拿卡,自然是f(N-2)种了.
若a拿b的卡B,b没拿a的卡A(与"b没拿b的卡B"相同),则显然与N-1个人拿卡一样,自然是f(N-1)种了.
而a不一定拿B,只要是B,C,D...(N-1个)中的一个就可以了,所以在f(N-1)+f(N-2)再乘上N-1就行了.
如果你学过解抽象函数方程的话,f(N)=(N-1)[f(N-1)+f(N-2)]在自然数内的解是f(N)=N![1/2!-1/3!+...+(-1)^N/N!](N=1时f(N)=1).
#include<stdio.h>  
int f(int n,int m)  //计算从n个人任选m个人Cnm;
{  
    long long max=1,min=1,a,b,c;  
        for(a=n,c=m;a>=m,c>0;a--,c--)  
        {  
            max=max*a;  
            min=min*c;  
        }  
        b=max/min;  
        return b;  
}  
int main()  
{  
    long long a,b,n,m,c;  
    long long p[25]={0,0,1}; 
        for(a=3;a<=20;a++)  
            p[a]=(a-1)*(p[a-1]+p[a-2]);//  计算a个人全错位排列的情况
    while(scanf("%d%d",&n,&m)!=EOF)  
    {  
        printf("%lld\n",f(n,m)*p[m]);
  
    }  
}    


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:118946次
    • 积分:2044
    • 等级:
    • 排名:第18733名
    • 原创:73篇
    • 转载:16篇
    • 译文:6篇
    • 评论:27条
    最新评论