关闭

数根 nyoj 424 和 485

标签: cini
558人阅读 评论(0) 收藏 举报
分类:

给出一个数n,求n^n的数根,数根即各位数字之和,如果这个和不是一位数,继续求这个数的各位数字之和,直到为一位数为止。

现在分析一个问题,假设将十位数为a,个位数为b的一个整数表示为ab,则推导得

ab*ab = (a*10+b)*(a*10+b) = 100*a*a+10*2*a*b+b*b
根据上式可得:root(ab*ab) = a*a+2*a*b+b*b = (a+b)*(a+b);[公式一] 
同理也可证得:root(ab*ab*ab) = (a+b)*(a+b)*(a+b);[公式二] 
可以看出,N个相同整数的乘积总值的树根 = 每一项元素的树根的乘积

再设另外一个整数cd,且cd!=ab
ab*cd = (a*10+b)*(c*10+d) = 100*a*c+10*(a*d+b*c)+b*d
根据上式可得:root(ab*cd) = a*c+a*d+b*c+b*d = (a+b)*(c+d);[公式三] 
可见,对于两个不相同整数也成立。

最后将上面证得的结果一般化:

N个整数的乘积总值的数根 = 每个项元素的数根的乘积 

因为ab*ab=(10*a+b)*(10*a+b)=100*a*a+10*2*a*b+b*b=a*a+2*a*b+b*b=(a+b)*(a+b)

abc*abc=(100*a+10*b+c)*(100*a+10*b+c)

               =10000*a*a+2000*a*b+100*b*b+200*a*c+20*b*c+c*c

               =a*a+2*a*b+b*b+2*a*c+2*b*c+c*c

               =(a+b)^2+2*c*(a+b)+c*c

              = (a+b+c)*(a+b+c)

同理可以知道四位数,五位数也一样,

即n*n的数根=n的数根*n的数根


某大牛的代码:

#include <stdio.h>
int main()
{
int i,m,n;
while(scanf("%d",&n)&&n)
{
   m=1;
   for(i=0;i<n;i++)
   {
    m=m*n;
    m=m%9==0?9:m%9;
   }
   printf("%d\n",m);
}
return 0;
}

还有一个更牛的代码:

#include <stdio.h>
int main()
{
int n;
char s[20]="914942971915947978";
while(scanf("%d",&n)&&n)
{
   printf("%c\n",s[n%18]);
}
return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:120687次
    • 积分:2060
    • 等级:
    • 排名:第19359名
    • 原创:73篇
    • 转载:16篇
    • 译文:6篇
    • 评论:27条
    最新评论