关闭

nyoj 143第几是谁?和 nyoj 139 我排第几个

1185人阅读 评论(2) 收藏 举报

康拓展开和康拓逆展开

 把一个整数X展开成如下形式:

  X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!
  其中,a为整数,并且0<=a[i]<i(1<=i<=n)

 {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。

  代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
  他们间的对应关系可由康托展开来找到。
  如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :
  第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+1*0!是康托展开。
  再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。

逆展开

 例1 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕

  (1)找出第96个数
  首先用96-1得到95
  用95去除4! 得到3余23
  用23去除3! 得到3余5
  用5去除2!得到2余1
  用1去除1!得到1余0有3个数比它小的数是4
  所以第一位是4
  有3个数比它小的数是4但4已经在之前出现过了所以是5(因为4在之前出现过了所以实际比5小的数是3个)
  有2个数比它小的数是3
  有1个数比它小的数是2
  最后一个数只能是1
  所以这个数是45321
  (2)找出第16个数
  首先用16-1得到15
  用15去除4!得到0余15
  用15去除3!得到2余3
  用3去除2!得到1余1
  用1去除1!得到1余0
  有0个数比它小的数是1
  有2个数比它小的数是3 但由于1已经在之前出现过了所以是4(因为1在之前出现过了所以实际比4小的数是2)
  有1个数比它小的数是2 但由于1已经在之前出现过了所以是3(因为1在之前出现过了所以实际比3小的数是1)
  有1个数比它小得数是2 但由于1,3,4已经在之前出现过了所以是5(因为1,3,4在之前出现过了所以实际比5小的数是1)
  最后一个数只能是2
  所以这个数是14352

nyoj 143

 
#include<stdio.h>
int b[13],c[13];
int main()
{
	int n,t,j,i,k;
	scanf("%d",&n);
	b[0]=1;b[1]=1;
	for(i=2;i<12;i++)
	{
		b[i]=i*b[i-1];
	}

	while(n--)
	{
		scanf("%d",&k);
		int a[13]={0,1,2,3,4,5,6,7,8,9,10,11};
		k=k-1;
	    for(i=0;i<12;i++)
	   { 
		   t=k/b[11-i];
	       c[i]=a[t];
		   for(j=t;j<11;j++)
		   { a[j]=a[j+1];}
		   k-=t*b[11-i];
	   }
		for(i=0;i<12;i++)
			printf("%c",c[i]+97);
		printf("\n");
	 
	}
	return 0;
}        

nyoj  139

 
#include<stdio.h>
char a[13];
int b[13];
int main()
{
	int n,count,j,sum,i;
	scanf("%d",&n);
	b[0]=0;b[1]=1;
	for(i=2;i<12;i++)
	{
		b[i]=i*b[i-1];
	}
	while(n--)
	{
		scanf("%s",a);
		sum=0;
	  for(i=0;i<12;i++)
	  {	  count=0;
		  for(j=i+1;j<12;j++)
		  {
			  if(a[i]>a[j])//后面比他小的数有几个(相当于本身减去前面比他小的数)
				  count++;
		  }
		  sum+=count*b[11-i];
	}
	  printf("%d\n",sum+1);
	}
	return 0;
}        


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:119045次
    • 积分:2046
    • 等级:
    • 排名:第18828名
    • 原创:73篇
    • 转载:16篇
    • 译文:6篇
    • 评论:27条
    最新评论