关闭

nyoj 461 Fibonacci数列(四)

534人阅读 评论(0) 收藏 举报

Fibonacci数列是个神奇的数列,它包含了太多的知识,有些你甚至想都想不到……

这个题目的意思很简单了,但是这个题目绝对不是让你循环算出的,或许你做过fibonacci数列(二)的话,你也许在想使用矩阵二分幂的方法,但是这个方法只适合找F(n)的低位数字,至于这个题目,则是另一种思路,使用通项公式。

实际上我们可以把这一类题目归类:求最Fibonacci数列F(n)的高位,求n^m的高位,求n!的高位……,求n!有多少位数……,这类为题是要找一个很大的数的高位,或者估计出这个数有多大。区别于以前的求低位,这些问题实际上是一种近似计算,我们一般的解法是找出欲求的表达式an的同阶的一个表达式bn;

那么n很大的时候我们就可以用bn来近似代替an了,这里我们一般要求bn是比较容易计算出来的表达式。

具体到这个题目,我们知道Fibonacci数列有通项公为:

 

 

 

 

上面通项公式中间应该为减号,copy过来的图片,改不了,,,无语

那么问题至此就很简单了,我们最后可以计算出log(an),保留它的的小数部分为ans即可。

#include<stdio.h>
#include<math.h>
int main()
{
	int n,m;
	int p[]={0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765};
	while(scanf("%d",&n)!=EOF)
	{
		double sum,a=-0.5*log(5)/log(10),b=log( ( 1+sqrt(5.0) )/2 )/log(10);
		if(n<=20)
			printf("%d\n",p[n]);
		else
		{
			double sum;
			sum=a+n*b;
			sum=sum-int(sum);
			sum=pow(10,sum);
			while(sum<1000)
				sum=sum*10;
			printf("%d\n",int(sum));

		}
	}
}




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:119021次
    • 积分:2046
    • 等级:
    • 排名:第18792名
    • 原创:73篇
    • 转载:16篇
    • 译文:6篇
    • 评论:27条
    最新评论