关闭

大数据分析

标签: Hilbert spacebig data大数据hadoop
592人阅读 评论(0) 收藏 举报
分类:

    前期看这方面的论文,感觉业界主要使用方案:

    1、基于Hadoop的云平台分析架构(Mapreduce+Hbase);这方面主要在Mapreduce上做并行分布式处理;典型的论文有“2009VLDB-MAD Skills New Analysis Practices for Big Data”、“2011CIDR-Starfish A Self tuning System for Big Data Analytics”、“2012VLDB-MapReduce Algorithms for Big Data Analysis”、“12VLDB-The HaLoop approach to large-scale iterative data analysis”、“2010VLDB-Dremel Interactive Analysis of WebScale”,这些google里很好下的;

    2、基于知识网格和列存储为主要框架的,以brighthouse为主要代表的,典型的有“2010-ICGC-Infobright – Analytic Database Engine using Rough Sets & Granular Computing”、“2011-SOCC-DOT A Matrix Model for Analyzing,Optimizing and Deploying Software for Big Data Analytics in Distributed Systems”、“2011VLDB-Column Oriented Storage Techniques for MapReduce”、“2012VLDB-The Vertica Analytic Database CStore”;

   3、美国一家Hilbert公司,采用Hilbert和网格计算的方式,完成大数据存储与分析,他们用了Hilbert,是巧合,还是有意?这个是否值得我们跟进呢?可惜的是他们居然做成了产业,可见已经研究很深入了,不知道他们到了哪一步?仅从他们公司的文档中,发现不了太多的东西。

  4、看了很多大数据分析的,大都是建立在云平台上的,为什么美国人把云数据改叫成大数据了呢,难道只是量变大了么,大数据的到底还有什么不同呢?量无限大、高速增长、类型多、边界不清?

   

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17058次
    • 积分:330
    • 等级:
    • 排名:千里之外
    • 原创:17篇
    • 转载:3篇
    • 译文:0篇
    • 评论:1条
    文章存档
    最新评论