关闭

陈越《数据结构》第七讲 图(中)二

最短路径问题 定义: 在网络中,求两个不同顶点之间的所有路径中,边的权值之和最小的那一条路径。这条路径就是两点之间的 最短路径\color{red}{最短路径}(Shortest Path)。 - 第一个顶点为 源点\color{red}{源点} (Source ); - 最后一个顶点为 终点\color{red}{终点} (Destination)。 根据源点的多少和是有向图还是无...
阅读(22) 评论(0)

陈越《数据结构》第七讲 图(中)一

Tree Traversals Again1086.Tree Traversals Again (25) An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with...
阅读(27) 评论(0)

陈越《数据结构》第六讲 图(上)

6.1 什么是图6.1.1 定义 图示表示“多对多”的关系(树与线性表都可以认为是其特殊形式); 图包含: 一组顶点\color{red}{一组顶点}:通常用 VV(Vertex) 表示顶点集合; 一组边\color{red}{一组边}:通常用 EE(Edge) 表示边的集合; — 边是顶点对:(v,w)∈E(v,w)\in{E},其中v,w∈Vv,w\in{V} ;...
阅读(54) 评论(0)

陈越《数据结构》第五讲 树(下)

5.1 堆(heap)(解决优先队列)5.1.1 定义 定义\color{red}{定义}: 优先队列(Priority Queue):特殊的“ 队列”,取出元素的顺序是依照元素的优先权(关键字) 大小,而不是元素进入队列的先后顺序。 即可认为: 每个加入队列的值有一定的意义(大小),进入队列没有规定,但是出队列要根据一定的意义(大小)出队列。 5.1.2 存...
阅读(60) 评论(0)

陈越《数据结构》第四讲 树(中)

4.1 二叉搜索树4.1.1 定义与抽象数据类型的基本操作1.定义:\color{red}{定义:} 一棵二叉树,可以为空;如果不为空,满足以下性质: 1. 非空 左子树 的所有 键值小于其根结点 的键值。 2. 非空 右子树 的所有 键值大于其根结点 的键值。 3. 左、右子树都是二叉搜索树 。 2.抽象数据类型:\color{red}{抽象数据...
阅读(67) 评论(0)

C/C++把字符串划分为二维字数组,2种分割方法

本实验是读取ini文件中的字符串,字符串是二维数组的形式。方法一首先我用的是strtok_s; 注: 1.strtok_s的用法 函数原型:char *strtok_s( char *strToken, const char *strDelimit, char **buf); 这个函数将剩余的字符串存储在buf变量中,而不是静态变量中,从而保证了安全性。 2.strtok的用...
阅读(130) 评论(0)

C++Primer第五版 第二章练习

2.1.1节练习练习2.1: 类型int ,long ,long long 和 short的区别是什么?无符号类型和带符号类型的区别是什么?float和double的区别是什么?练习2.2:计算按揭贷款时,对于利率、本金和付款分别应选择何种数据类型?说明你的理由。答: 2.1 int 是整形 ,最小尺寸16位。 long 是长整形,32位; long long 也是长整型 最小尺...
阅读(325) 评论(0)

C++Primer第五版 1.5.1节练习

1. 题目练习1.20 :在网站(书上提供)上,第一章的代码目录中包含了头文件Sales_item.h。将它拷贝到你自己的工作目录中。用它编写一个程序,读取一组书籍销售记录,将每条记录打印到标准输出上。练习 1.21 :编写程序,读取两个ISBN相同的Sales_item对象,输出它们的和。练习 1.22 :编写程序,读取多个具有相同ISBN的销售记录,输出其所有记录的和。2.代码Sales_ite...
阅读(131) 评论(0)

编译器与解释器的区别

1. 基本理解编译器: 编译完就可以扔了,运行不依赖它; 解释器: 你要运行,必须依赖它;2.深入理解编译器:在代码运行之前,生成目标平台指令,可脱离编译器而独立运行。 解释器:在代码运行过程中,生成目标平台指令,不可脱离解释器,无法独立运行。编译器: C 、 C++等 解释器: Python 、 Ruby 、 PHP 等。3.参考文献 https://nickdesaulniers.gith...
阅读(93) 评论(0)

Visual Studio控制台程序输出窗口一闪而过的解决方法

刚接触 Visual Studio的时候大多数人会写个Hello World的程序试一下,有的人会发现执行结束后输出窗口会一闪而过,并没有出现Press any key to continue的字样。无论是在Visual Studio 2008、2010还是2012中都有这种情况出现,有些人可能会用下面两种方法中的一种: 在程序代码的最后加上system(“pause”)或者getchar...
阅读(318) 评论(0)

应聘高校教师的试讲技巧

1.注意事项如果毕业想到高校任教,通常都会经历试讲这一关。我觉得博士试讲需要注意以下几个方面: (1) 首先要自信。如果到高校任教,讲课是基本功。所以千万不要怕试讲,保持自信的态度,试讲时要面向台下的听众,声音宏亮; (2) 认真准备试讲内容。尽可能和试讲学院沟通试讲课程及章节,如果可以自选,那就要选自己最熟悉,能够适当发挥点的章节讲,千万别选引言或者概述,通常刚毕业博士讲引言或概述讲不好。如果...
阅读(774) 评论(0)

使用Markdown编辑器写博客

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列图和流程图 离线写博客 导入导出Markdown文件 丰富的快捷键 快捷键 加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl...
阅读(105) 评论(0)

陈越《数据结构》第三讲 树(上)

3.1 树与树的表示3.1.1 引子:查找分层次组织在管理上具有更高的效率! 查找\color{red}{查找} 1. 定义: 根据某个给定 关键字K ,从 集合R 中找出关键字与K 相同的记录。 2.分类: - 静态查找:集合中 记录是固定 的; - 动态查找: 集合中 记录是动态变化的。 3.静态查找的方法...
阅读(286) 评论(0)

陈越《数据结构》第二章 线性结构

2.1 线性表2.1.1 基本知识例1:一元多项式及其运算 f(x)=a0+a1x....+an−1xn−1+anxnf(x)=a_0 + a_1 x ....+a_{n-1}x^{n-1} + a_nx^n 表示方法: 1. 顺序存储结构直接表示; 2. 顺序存储 结构; (用结构数组表示:数组分量是由系数aia_i 、指数ii组成的结构,对应一个非零项) 3. 链表结构存储非...
阅读(443) 评论(0)

陈越《数据结构》第一讲 基本概念

陈越《数据结构》第一讲 基本概念1什么是数据结构1.1 引子例子:如何在书架上摆放图书? 随便放; 按照书名的拼音字母顺序排放; 把书架划分成几块区域,每块区域指定摆放某种类别的图书;在每种类别内,按照书名的拼音字母顺序排放。 解决问题方法的效率,跟数据的组织方式有关。\color{red}{解决问题方法的效率, 跟数据的组织方式有关。} 例2:写程序实现一...
阅读(557) 评论(0)

MIT 线性代数(34—35)读书笔记

第三十四讲:左右逆和伪逆前面我们涉及到的逆(inverse)都是指左、右乘均成立的逆矩阵,即A−1A=I=AA−1A^{-1}A=I=AA^{-1}。在这种情况下,m×nm\times n矩阵AA满足m=n=rank(A)m=n=rank(A),也就是满秩方阵。左逆(left inserve)记得我们在最小二乘一讲(第十六讲)介绍过列满秩的情况,也就是列向量线性无关,但行向量通常不是线性无关的。常见...
阅读(485) 评论(1)

MIT 线性代数(31—33)读书笔记

第三十一讲:线性变换及对应矩阵本讲从线性变换这一概念出发,每个线性变换都对应于一个矩阵。矩阵变换的背后正是线性变换的概念。理解线性变换的方法就是确定它背后的矩阵,这是线性变换的本质1 线性变换1.1 定义如何判断一个操作是不是线性变换? 线性变换需满足以下两个要求: T(v+w)=T(v)+T(w)(1) T(v+w)=T(v)+T(w)\tag{1} T(cv)=cT(v)(2...
阅读(409) 评论(0)

MIT 线性代数(28—30)读书笔记

第二十八讲:正定矩阵和最小值本讲学习正定矩阵positive definite matrices,这个主题把整门课的知识融为一体,主元,行列式,特征值,不稳定性,新表达式xTAxx^TAx。目标是:怎么判断一个矩阵是否是正定矩阵\color{red}{怎么判断一个矩阵是否是正定矩阵},为什么对正定矩阵感兴趣,最后给出几何上的解释,椭圆和正定性有关,双曲线与正定性无关。当极小值存在时,如何找出极小值应...
阅读(551) 评论(0)

MIT 线性代数(25—27)读书笔记

第二十五讲:复习二 我们学习了正交性,有矩阵Q=[q1 q2 ⋯ qn]Q=\Bigg[q_1\ q_2\ \cdots\ q_n\Bigg],若其列向量相互正交,则该矩阵满足QTQ=IQ^TQ=I。 进一步研究投影,我们了解了Gram-Schmidt正交化法,核心思想是求法向量,即从原向量中减去投影向量E=b−P,P=Ax=ATbATA⋅AE=b-P, P=Ax=\...
阅读(528) 评论(0)

MIT 线性代数(22—24)读书笔记

第二十二课时:对角化和A 的幂...
阅读(532) 评论(0)
118条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:170010次
    • 积分:2471
    • 等级:
    • 排名:第16462名
    • 原创:68篇
    • 转载:47篇
    • 译文:3篇
    • 评论:11条
    最新评论