关闭

CodeForces 596B Wilbur and Array 贪心

标签: codeforces
260人阅读 评论(0) 收藏 举报
分类:

给出原始{ai}={0},{bi}。每次修改{ai..n}+1或-1,求最小操作次数使{ai}=={bi}。

累计相邻两数差即可。

因为差最大10^9,数字有2*10^5,要long long。

#include <cstdio>
#include <cstdlib>
typedef long long ll;
int main() {
    static ll a[200001];
    int n,i;
    scanf("%d", &n);
    for(i=1;i<=n;i++) scanf("%I64d", &a[i]);
    ll ans=abs(a[1]);
    for(i=2;i<=n;i++)
        ans+=abs(a[i]-a[i-1]);
    printf("%I64d", ans);
    return 0;
}


B. Wilbur and Array
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Wilbur the pig is tinkering with arrays again. He has the array a1, a2, ..., an initially consisting of n zeros. At one step, he can choose any index i and either add 1 to all elementsai, ai + 1, ... , an or subtract 1 from all elements ai, ai + 1, ..., an. His goal is to end up with the array b1, b2, ..., bn.

Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the length of the array ai. Initially ai = 0 for every position i, so this array is not given in the input.

The second line of the input contains n integers b1, b2, ..., bn ( - 109 ≤ bi ≤ 109).

Output

Print the minimum number of steps that Wilbur needs to make in order to achieve ai = bi for all i.

Sample test(s)
input
5
1 2 3 4 5
output
5
input
4
1 2 2 1
output
3
Note

In the first sample, Wilbur may successively choose indices 1234, and 5, and add 1 to corresponding suffixes.

In the second sample, Wilbur first chooses indices 1 and 2 and adds 1 to corresponding suffixes, then he chooses index 4 and subtract 1.



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:115842次
    • 积分:4731
    • 等级:
    • 排名:第6097名
    • 原创:371篇
    • 转载:7篇
    • 译文:0篇
    • 评论:4条
    神犇们的后庭院
    wzq_QwQ http://blog.csdn.net/wzq_QwQ
    vmurder http://blog.csdn.net/vmurder/
    PoPoQQQ http://blog.csdn.net/popoqqq/
    YJQ神犇 http://tarawa.github.io/
    ?神?论文
    http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf