# Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

# Description

One of the world-wide cooperative computing tasks is the "Grand Internet Mersenne Prime Search" -- GIMPS -- striving to find ever-larger prime numbers by examining a particular category of such numbers.
A Mersenne number is defined as a number of the form (2p–1), where p is a prime number -- a number divisible only by one and itself. (A number that can be divided by numbers other than itself and one are called "composite" numbers, and each of these can be uniquely represented by the prime numbers that can be multiplied together to generate the composite number — referred to as its prime factors.)
Initially it looks as though the Mersenne numbers are all primes.

Prime Corresponding Mersenne Number
2 4–1 = 3 -- prime
3 8–1 = 7 -- prime
5 32–1 = 31 -- prime
7 128–1 = 127 -- prime

If, however, we are having a "Grand Internet" search, that must not be the case.
Where k is an input parameter, compute all the Mersenne composite numbers less than 2k -- where k <= 63 (that is, it will fit in a 64-bit signed integer on the computer). In Java, the "long" data type is a signed 64 bit integer. Under gcc and g++ (C and C++ in the programming contest environment), the "long long" data type is a signed 64 bit integer.

# Input

Input is from file a. in. It contains a single number, without leading or trailing blanks, giving the value of k. As promised, k <= 63.

# Output

One line per Mersenne composite number giving first the prime factors (in increasing order) separate by asterisks, an equal sign, the Mersenne number itself, an equal sign, and then the explicit statement of the Mersenne number, as shown in the sample output. Use exactly this format. Note that all separating white space fields consist of one blank.

# Sample Input

31

# Sample Output

23 * 89 = 2047 = ( 2 ^ 11 ) - 1
47 * 178481 = 8388607 = ( 2 ^ 23 ) - 1
233 * 1103 * 2089 = 536870911 = ( 2 ^ 29 ) - 1

Mersenne number is a number of the form (2^p–1), where p is a prime number
p 小于64

#include <iostream>
#include <cmath>

int main()
{
int key;
std::cin >> key;
int prime[] = {2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59}; //key <= 64 && key is prime
for (int c = 0; prime[c] <= key && c < 17; ++c) {
long long temp = pow(2.0, prime[c]) - 1;
long long tempp = temp;
bool judge = false;
for (long long d = 3; d <= sqrt(temp); ) { //筛法求素数
while (temp % d == 0) {
if (!judge) {
std::cout << d;
judge = true;
} else {
std::cout << " * " << d;
}
temp /= d;
}
d += 2;
}
if (judge)
std::cout << " * " << temp << " = " << tempp
<< " = ( 2 ^ " << prime[c] << " ) - 1"
<< std::endl;
}
return 0;
}

• 本文已收录于以下专栏：

## Sicily 1009. Mersenne Composite N

1009. Mersenne Composite N Constraints Time Limit: 1 secs, Memory Limit: 32 MB Descriptio...
• zhanweeleee
• 2014年11月09日 14:56
• 381

## sicily 1009. Mersenne Composite N

• sina012345
• 2013年12月04日 01:13
• 495

## [sicily online]1009. Mersenne Composite N

/* 移位操作的限制 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description One of the world-wide ...
• qiuchenl
• 2012年12月05日 11:43
• 921

## 1009. Mersenne Composite N

• Er_mu
• 2014年10月08日 10:21
• 341

## 1009. Mersenne Composite N 梅森素数

/* 1009. Mersenne Composite N 梅森素数 题目大意： 梅森素数Mn：定义为2n-1其中n为素数且2n-1也为素数的数。 给定k，求出...
• lhsheng1989
• 2013年01月08日 22:00
• 910

## POJ 2191 Mersenne Composite Numbers 整数分解

• Tsaid
• 2012年02月24日 22:03
• 950

## POJ-2191-Mersenne Composite Numbers

• z309241990
• 2013年08月06日 19:59
• 533

## poj 2191 Mersenne Composite Numbers 大数分解

• sepNINE
• 2015年04月15日 21:28
• 456

## Sicily.1009. Mersenne Composite N

// 1009. Mersenne Composite N /* 梅森素数: 2^p -1 (p是素数，2^p -1也是素数) 题目大意：给出一个p...
• xiehaoyun2012
• 2012年12月26日 11:49
• 395

## sicily 1009.Mersenne Composite N

• zsjhxl
• 2013年10月22日 19:02
• 396

举报原因： 您举报文章：sicily 1009. Mersenne Composite N 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)