158人阅读 评论(0)

# Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

# Description

One of the world-wide cooperative computing tasks is the "Grand Internet Mersenne Prime Search" -- GIMPS -- striving to find ever-larger prime numbers by examining a particular category of such numbers.
A Mersenne number is defined as a number of the form (2p–1), where p is a prime number -- a number divisible only by one and itself. (A number that can be divided by numbers other than itself and one are called "composite" numbers, and each of these can be uniquely represented by the prime numbers that can be multiplied together to generate the composite number — referred to as its prime factors.)
Initially it looks as though the Mersenne numbers are all primes.

Prime Corresponding Mersenne Number
2 4–1 = 3 -- prime
3 8–1 = 7 -- prime
5 32–1 = 31 -- prime
7 128–1 = 127 -- prime

If, however, we are having a "Grand Internet" search, that must not be the case.
Where k is an input parameter, compute all the Mersenne composite numbers less than 2k -- where k <= 63 (that is, it will fit in a 64-bit signed integer on the computer). In Java, the "long" data type is a signed 64 bit integer. Under gcc and g++ (C and C++ in the programming contest environment), the "long long" data type is a signed 64 bit integer.

# Input

Input is from file a. in. It contains a single number, without leading or trailing blanks, giving the value of k. As promised, k <= 63.

# Output

One line per Mersenne composite number giving first the prime factors (in increasing order) separate by asterisks, an equal sign, the Mersenne number itself, an equal sign, and then the explicit statement of the Mersenne number, as shown in the sample output. Use exactly this format. Note that all separating white space fields consist of one blank.

# Sample Input

31

# Sample Output

23 * 89 = 2047 = ( 2 ^ 11 ) - 1
47 * 178481 = 8388607 = ( 2 ^ 23 ) - 1
233 * 1103 * 2089 = 536870911 = ( 2 ^ 29 ) - 1

Mersenne number is a number of the form (2^p–1), where p is a prime number
p 小于64

#include <iostream>
#include <cmath>

int main()
{
int key;
std::cin >> key;
int prime[] = {2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59}; //key <= 64 && key is prime
for (int c = 0; prime[c] <= key && c < 17; ++c) {
long long temp = pow(2.0, prime[c]) - 1;
long long tempp = temp;
bool judge = false;
for (long long d = 3; d <= sqrt(temp); ) { //筛法求素数
while (temp % d == 0) {
if (!judge) {
std::cout << d;
judge = true;
} else {
std::cout << " * " << d;
}
temp /= d;
}
d += 2;
}
if (judge)
std::cout << " * " << temp << " = " << tempp
<< " = ( 2 ^ " << prime[c] << " ) - 1"
<< std::endl;
}
return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：27595次
• 积分：1288
• 等级：
• 排名：千里之外
• 原创：104篇
• 转载：0篇
• 译文：1篇
• 评论：2条
文章分类
阅读排行
评论排行
最新评论