# Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

# Description

A right-heavy tree is a binary tree where the value of a node is greater than or equal to the values of the nodes in its left subtree and less than the values of the nodes in its right subtree. A right-heavy tree could be empty.

Write a program that will create a right-heavy tree from a given input sequence and then traverse the tree and printing the value of the node each time a node is visited using inorder, preorder and postorder traversal.

The program should create the nodes in the tree dynamically. Thus, basically the tree can be of any size limited only by the amount of memory available in the computer.

# Input

The input will contain several test cases, each of them as described below.

The first number in the input indicates the number of nodes in the tree. Then, the input is followed by the integers comprising the values of the nodes of the tree.

# Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line. The output will be the sequence of node and labeled by the traversal method used, as shown in the sample output below.

# Sample Input

8 8 2 4 7 5 3 1 6
9 5 5 6 3 2 9 3 3 2
8 4 2 1 4 3 2 5 1
0

# Sample Output

Inorder: 1 2 3 4 5 6 7 8
Preorder: 8 2 1 4 3 7 5 6
Postorder: 1 3 6 5 7 4 2 8

Inorder: 2 2 3 3 3 5 5 6 9
Preorder: 5 5 3 2 2 3 3 6 9
Postorder: 2 3 3 2 3 5 9 6 5

Inorder: 1 1 2 2 3 4 4 5
Preorder: 4 2 1 1 2 4 3 5
Postorder: 1 2 1 3 4 2 5 4

Inorder:
Preorder:
Postorder:

#include <stdio.h>

struct Node {
Node *l, *r;
int id;
Node () {
}
Node (int id_) {
id = id_;
l = NULL;
r = NULL;
}
};
Node *nodes;

inline void insert(int key) {
Node *temp;
temp = nodes;
while (1) {
if (temp->id >= key) {
if (temp->l == NULL) {
temp->l = new Node(key);
return;
} else {
temp = temp->l;
}
} else {
if (temp->r == NULL) {
temp->r = new Node(key);
return;
} else {
temp = temp->r;
}
}
}
}

inline  void inorder(Node *t) {
if (t->l != NULL)
inorder(t->l);
printf(" %d", t->id);
if (t->r != NULL)
inorder(t->r);
}

inline void preorder(Node *t) {
printf(" %d", t->id);
if (t->l != NULL)
preorder(t->l);
if (t->r != NULL)
preorder(t->r);
}

inline void postorder(Node *t) {
if (t->l != NULL)
postorder(t->l);
if (t->r != NULL)
postorder(t->r);
printf(" %d", t->id);
}

int main() {
int num;
bool first = false;
while (scanf("%d", &num) != EOF) {
if (first)
printf("\n");
first = true;

if (num == 0) {
printf("Inorder: \nPreorder: \npostorder: \n");
break;
}

int digit[num];
for (int c = 0; c < num; ++c)
scanf("%d", &digit[c]);

nodes = new Node(digit[0]);
for (int c = 1; c < num; ++c) {
insert(digit[c]);
}

//
printf("Inorder:");
inorder(nodes);
printf("\n");
//
printf("Preorder:");
preorder(nodes);
printf("\n");
//
printf("Postorder:");
postorder(nodes);
printf("\n");
}
return 0;
}

• 本文已收录于以下专栏：

## Sicily 1310. Right-Heavy Tree

1310. Right-Heavy Tree Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description ...

## SOJ 1310. Right-Heavy Tree

Description A right-heavy tree is a binary tree where the value of a node is greater than or equa...

## 1310 Right-HeavyTree 0.44s 求0.02秒的实现，我知道这里一定有牛人！！！

• rmksun
• 2011年06月29日 22:04
• 290

## 210. Course Schedule II\199. Binary Tree Right Side View\279. Perfect Squares

Course Schedule II DESCRIPTION IMPLEMENTATION210. Course Schedule IIDESCRIPTIONThere are a total of ...

## Leetcode 199. Binary Tree Right Side View

Given a binary tree, imagine yourself standing on the right side of it, return the values of the nod...

## Binary Tree Right Side View

Binary Tree Right Side View Given a binary tree, imagine yourself standing on the right side of it, ...

## [LeetCode] Populate the next right pointer in binary tree I

Populate the next right pointer in binary tree Given the structure of node in binary tree structNod...

## Binary Tree Right Side View - LeetCode 199

• bu_min
• 2015年06月10日 19:26
• 232

举报原因： 您举报文章：sicily 1310. Right-Heavy Tree 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)