关闭

python opencv 图像按位操作

721人阅读 评论(0) 收藏 举报
分类:

13-python opencv 图像按位操作


概述

本节实现的是使用OpenCV里自带的函数,将一幅logo加到一张图片上去。

  • 提取mask
  • 利用mask生成带logo图片

实现过程

引用与读取图片

不再赘述,代码如下。

import cv2
import numpy as np

img = cv2.imread('test.png')
logo = cv2.imread('logo.jpg')
cv2.imshow("Img_Original", img)

获取mask

先将logo转成黑白,然后设置合适的阈值二值化,使得有内容的部分为黑(0),无内容的部分为白(255),这里使用的阈值为205。

logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
# binary & mask
ret, mask = cv2.threshold(logo_gray, 205, 255, cv2.THRESH_BINARY)

根据logo大小提取感兴趣区域

获取logo大小,在图像的左上角提取同样大小的ROI。

rows, cols, channels = logo.shape
roi = img[0:rows, 0:cols]

将logo加到感兴趣区域

如果mask部分为黑,则将ROI的这部分用logo的内容替换,否则保留其原先内容。

# dst
dst = roi
for r in range(rows):
    for c in range(cols):
        if mask[r, c] == 0:
            dst[r, c, :] = logo[r, c, :]
# add the dst to the img
img[0:rows, 0:cols] = dst

显示图片

cv2.imshow("Color Logo", logo)
cv2.imshow("Gray Logo", logo_gray)
cv2.imshow("Mask", mask)
cv2.imshow("Dst", dst)
cv2.imshow("Img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

源代码

整个程序的源代码如下:

# created by Huang Lu
# 28/08/2016 13:55:37    
# Department of EE, Tsinghua Univ.

import cv2
import numpy as np

img = cv2.imread('test.png')
logo = cv2.imread('logo.jpg')
cv2.imshow("Img_Original", img)

logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
rows, cols, channels = logo.shape
roi = img[0:rows, 0:cols]
# binary & mask
ret, mask = cv2.threshold(logo_gray, 205, 255, cv2.THRESH_BINARY)
# dst
dst = roi
for r in range(rows):
    for c in range(cols):
        if mask[r, c] == 0:
            dst[r, c, :] = logo[r, c, :]
# add the dst to the img
img[0:rows, 0:cols] = dst


cv2.imshow("Color Logo", logo)
cv2.imshow("Gray Logo", logo_gray)
cv2.imshow("Mask", mask)
cv2.imshow("Dst", dst)
cv2.imshow("Img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

也可以参考我的GitHub上的,点击这里

运行结果

在命令行进入该源程序所在目录后,运行python main.py后即可显示结果。显示结果如下:

融和图片

参考

0
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:46145次
    • 积分:653
    • 等级:
    • 排名:千里之外
    • 原创:22篇
    • 转载:1篇
    • 译文:0篇
    • 评论:7条
    文章分类
    文章存档
    最新评论