问题描述
给定一个n*m的矩阵A,求A中的一个非空子矩阵,使这个子矩阵中的元素和最大。
其中,A的子矩阵指在A中行和列均连续的一块。
其中,A的子矩阵指在A中行和列均连续的一块。
输入格式
输入的第一行包含两个整数n, m,分别表示矩阵A的行数和列数。
接下来n行,每行m个整数,表示矩阵A。
接下来n行,每行m个整数,表示矩阵A。
输出格式
输出一行,包含一个整数,表示A中最大的子矩阵中的元素和。
样例输入
3 3
-1 -4 3
3 4 -1
-5 -2 8
-1 -4 3
3 4 -1
-5 -2 8
样例输出
10
样例说明
取最后一列,和为10。
数据规模和约定
对于50%的数据,1<=n, m<=50;
对于100%的数据,1<=n, m<=500,A中每个元素的绝对值不超过5000。
对于100%的数据,1<=n, m<=500,A中每个元素的绝对值不超过5000。
题目大意:求连续行、列的子矩阵的最大元素和。由于行、列必须是连续的,所以可以先求出每一列前n行的和,然后再枚举一个 行的开始和结束就可以啦,然后再用最大字段和求出最大和。本质是将二维的转化为一维的。
#include <iostream>
#include <cstdio>
#include <cstring>
#define N 505
#define INF 0x3f3f3f3f
int a[N][N],dp[N],b[N];
int ans=-INF;
int main(int argc, char *argv[]) {
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
}
for(int sr=1;sr<=n;sr++){//设置sr为起始行
memset(b,0,sizeof(b));
for(int i=sr;i<=n;i++){//i表示结束行,从sr行加到i行。
for(int j=1;j<=m;j++){
b[j]+=a[i][j];
}
dp[1]=b[1];
if(dp[1]>ans)//保证ans为最大值
ans=dp[1];
for(int j=2;j<=m;j++){//最大最段和
if(dp[j-1]<0)
dp[j]=b[j];
else
dp[j]=dp[j-1]+b[j];
if(dp[j]>ans)
ans=dp[j];
}
}
}
printf("%d\n",ans);
return 0;
}