关闭

CART之回归树构建

原文链接:https://cethik.vip/2016/09/21/machineCAST/ 一、概念 CART全称叫Classification and Regression Tree。首先要强调的是CART假设决策树是二叉树,内部结点特征的取值只有“是”和“否”,左分支是取值为“是”的分支,有分支则相反。这样的决策树等价于递归地二分每个特征。...
阅读(197) 评论(0)

Caffe SSD 配置与安装

为了跟进目标检测框架的最新进展,于是配置了SSD框架并成功运行demo,其中遇到不少坑记录下来。   1、假设CUDA、CuDNN、OpenBLAS、OpenCV等都已经安装完毕。我的版本是Ubuntu16.04+CUDA8.0+CuDNN5.0+OpenCV3.0。之前已成功配置过caffe-master。 2、下载caffe-ssd git clone git clonehttps...
阅读(699) 评论(2)

caffe实战之classify.py解析

本文将对caffe/python下的classify.py代码以及相关的classifier.py和io.py进行解析。 一、classify.py 由最后的if __name__ == '__main__': main(sys.argv)代表该文件在命令行下运行,则运行main函数,参数存放在sys.argv中。在main函数定义中,分别判断并存入各类参数,分别如下: input_file...
阅读(898) 评论(0)

caffe实战之训练并测试自己的数据

训练之前,确认caffe已经编译成功。本文以mstar数据库为例,介绍如何在caffe平台上训练卷及神经网络模型并进行测试。 一、准备数据 这个步骤是最繁琐,也最容易出错的一步,任何差池都会导致最终训练效果不如人意, 建议多花时间检查这部分,确保数据集的质量。 1、在data文件夹下新建文件夹mstar,并进入该目录,分别简历train和val文件夹。 2、在train和val文件夹下分...
阅读(296) 评论(0)

ubuntu+cuda8.0+opencv3 Caffe GPU环境配置

最近临近中期答辩,在总结一些以前碰到过的坑,以便后人乘凉。回顾了一下去年配置caffe的完整流程,去年双11买的神舟z7m电脑,性价比很高,显卡是GTX965m的,查了计算能力达5.2,刚买回来后就开始捣腾caffe环境下的配置。当时配置过程一波三折,主要卡在显卡驱动这一环节,因为Ubuntu对Nvidia显卡驱动的支持似乎不是很好。下面给出完整的配置流程。   一、 安装Ubuntu系统...
阅读(353) 评论(0)

Faster-RCNN算法精读

读论文:《Faster R-CNN: Towards Real-Time ObjectDetection with Region Proposal Networks》   摘要:算法主要解决两个问题: 1、提出区域建议网络RPN,快速生成候选区域;2、通过交替训练,使RPN和Fast-RCNN网络共享参数。   一、 RPN网络结构 RPN网络的作用是输入一张图像,输出一批矩形候选区域...
阅读(3165) 评论(3)

C++ 输入方法

一、字符串输入: 1、面向单词的输入: cin>>使用空白(空格、制表符和换行符)确定字符串的结束位置。如果一次输入两个单词,中间隔着空格,则只读取第一个单词,并自动在结尾处添加空字符。而另一个单词会留在缓冲中,有可能被后面的输入读到。 2、面向行的输入: 1)getline,通过回车键输入的换行符来确定结尾,然后丢弃换行符,并用空字符取代之。调用:cin.getline()。 有两个参...
阅读(223) 评论(0)

C++ cout输出技巧

cout默认输出格式为十进制。 如果要输出十六进制,输出前加: cout 如果要输出八进制,输出前加: cout...
阅读(283) 评论(0)

深度学习之路—写在开题前

明天即将研究生开题答辩,旁边机器还在跑着程序验证最新的网络结构,在笔记本上敲打心情日记。接到深度学习目标识别的题目真是阴差阳错,今年4月份alphago获胜的时候,王老师表示很关心这个方向,希望我们也做一个“狗”出来。我们都把它当玩笑了,事后,我尝试接触神经网络的知识,就想轻碰这个坑,拿它预测个波形就行了,也没想到日后会成为研究方向。        正直同学们都很关注机器学习,无意间女票跟我提了...
阅读(1025) 评论(1)

Batch Normalization 学习

原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce 一、背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Training by  Reducing Internal Covar...
阅读(578) 评论(0)
137条 共14页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:155995次
    • 积分:2828
    • 等级:
    • 排名:第13298名
    • 原创:125篇
    • 转载:12篇
    • 译文:0篇
    • 评论:30条
    博客专栏