字符串匹配算法(KMP、BM和Sunday),及Python实现

转载 2016年08月31日 10:01:20


分类: Python/Ruby

这篇博客主要对三种字符串匹配算法(KMPBMSunday)进行总结。这三种字符串匹配算法之间的主要区别在于:如果在匹配过程中遇到一个不匹配位,该用何种策略进行移位。例如,存在两个字符串,如下:

 

字符串:      ABCADAB ABCDABCDABD

搜索字符串:ABCDA

 

下面给出三种算法的例子

KMP:在此算法中当从前往后搜索时遇到第一个不匹配:A->D时,它将从搜索字符串入手决定移动多少位。在KMP算法的初始阶段会生成一张表,例如,上面搜索字符串生成的表为:pi[0,...,4] = {0,0,0,0,1}。这张表决定上面提到的移位。此时的移位为:3-pi[2](因为已经匹配了三个字符)。KMP算法的关键就是:匹配字符的初始生成表,而且是从前往后进行搜索。

BM:在此算法中,字符串搜索不是从头开始的,而是从末尾开始的,例如上面的例子中,首先比较的是DA,因为不相同,则在搜索字符中从后往前进行匹配查找,找到最右边的匹配字符后进行移位,如果找不到的话移位长度与匹配字符一样长,如下:

字符串:      ABCADAB ABCDABCDABD

搜索字符串:   ABCDA(移两位)

此时继续进行比较,不过此时的比较要考虑两方面以上上面提到的过程,还有一种情况就是已匹配的字符串中(DA),包含了搜索字符串的前缀(A),我们知道此时移动1~3位是没有意义的。所以BM算法的关键就是找到两种移位中的最大移位,进行以为。

Sunday:上面的两种字符串匹配算法都涉及到了对搜索字符的预处理,但Sunday算法预期完全不同。同样是上面的例子当搜到不匹配的字符串时,Sunday算法采用了一种完全不同的以为确定法。它会先找到字符串的第K+1个字符,K是搜索字符的长度。如果搜索字符串中不包含字符串中第K+1个字符,则直接移动K+1位。否则,按着BM算法移动搜索串中最右端的该字符到末尾的距离+1位。

下面给出具体的代码:

点击(此处)折叠或打开

  1. class StringPatternt(object):
  2.     def __init__(self,chr,p):
  3.         self.chr = chr;
  4.         self.p = p;
  5.         self.p_len = len(p);
  6.         self.pi = [0 for i in range(self.p_len)];
  7.     def set_pattern(self,p):
  8.         self.p = p;
  9.         self.p_len = len(p);
  10.     def set_chr(self,chr):
  11.         self.chr = chr;
  12.         
  13.     '''KMP'''
  14.     def __kmp_partial_match_table__(self):
  15.         k=0;q = 1;
  16.         #self.pi[0] = 0;
  17.         while q < self.p_len:
  18.             while (k > 0) and (self.p[k] != self.p[q]):
  19.                 k = self.pi[k-1];
  20.             if self.p[k] == self.p[q]:
  21.                 k = k+1;
  22.             self.pi[q] = k;
  23.             q = q+1;
  24.         return 0;
  25.     
  26.     def string_pattern_kmp(self):
  27.         self.__kmp_partial_match_table__();
  28.         print(self.pi);
  29.         list_size = len(self.chr);
  30.         pi_len = len(self.pi);
  31.         k=0;
  32.         for q in range(list_size):
  33.             while (k > 0) and (self.p[k] != self.chr[q]):
  34.                 k = self.pi[k-1];
  35.             if self.p[k] == self.chr[q]:
  36.                 k = k+1;
  37.             if k == pi_len:
  38.                 return q-pi_len+1;
  39.             #q = q+1;
  40.         return 0;
  41.     
  42.     '''BM'''
  43.     def __calc_match__(self,num):
  44.         k=num;j=0;
  45.         while k>=0:
  46.             if self.p[-k] == self.p[j]:
  47.                 k = k-1; j=j+1;
  48.                 if k<=0:
  49.                     self.pi[num-1] = num;
  50.                     return 0;
  51.             else:
  52.                 if num == 1:
  53.                     return 0;
  54.                 self.pi[num-1] = self.pi[num-2];
  55.                 return 0;
  56.         
  57.     def __init_good_table__(self):
  58.         i=1;
  59.         while i <= self.p_len:
  60.             self.__calc_match__(i);
  61.             i=i+1;
  62.         print (self.pi);
  63.         return 0;
  64.     
  65.     def __check_bad_table__(self,tmp_chr):
  66.         i=1;
  67.         while self.p_len-i >= 0:
  68.             if self.p[-i] == tmp_chr:
  69.                 return i;
  70.             else:
  71.                 i = i+1;
  72.         return self.p_len+1;
  73.     
  74.     def __check_good_table__(self,num):
  75.         if not num:
  76.             return self.p_len;
  77.         else:
  78.             return self.pi[num];
  79.     
  80.     def string_pettern_bm(self):
  81.         self.__init_good_table__();
  82.         tmp_len = self.p_len;
  83.         i = 1;
  84.         while tmp_len <= len(self.chr):
  85.             if self.p[-i]==self.chr[tmp_len-i]:
  86.                 i = i+1;
  87.                 if i > self.p_len:
  88.                     return tmp_len-self.p_len;
  89.             else:
  90.                 tmp_bad = self.__check_bad_table__(self.chr[tmp_len-i])-i;
  91.                 tmp_good= self.p_len-self.__check_good_table__(i-1);
  92.                 tmp_len = tmp_len+ max(tmp_bad,tmp_good);
  93.                 print(tmp_bad,tmp_good,tmp_len);
  94.                 i=1;
  95.         return 0;
  96.     
  97.     '''sunday'''
  98.     def __check_bad_shift__(self,p):
  99.         i=0;
  100.         while i<self.p_len:
  101.             if self.p[i] == p:
  102.                 return i;
  103.             else:
  104.                 i = i+1;
  105.         return -1;
  106.     
  107.     def string_pattern(self):
  108.         #self.__init_good_table__();
  109.         tmp_len = 0;
  110.         tmp_hop = self.p_len;
  111.         i=0;
  112.         while tmp_hop <= len(self.chr):
  113.             if self.p[i] == self.chr[tmp_len+i]:
  114.                 i = i+1;
  115.                 if i == self.p_len:
  116.                     return tmp_len;
  117.             else:
  118.                 tmp_len = tmp_len+self.p_len-self.__check_bad_shift__(self.chr[tmp_hop]);
  119.                 tmp_hop = tmp_len+self.p_len;
  120.                 i=0;
  121.         return 0;
本文出自:http://blog.chinaunix.net/uid-28311809-id-4243589.html

相关文章推荐

KMP模式匹配算法程序(Python,C++,C)

代码来自维基教科书:Knuth-Morris-Pratt pattern matcher。 Python程序如下: # Knuth-Morris-Pratt string matching # Dav...

使用Python语言写一个简单的KMP模式匹配算法实现

KMP算法简介 KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内(O(m+n):m和n分别为模式字符串与主串的长度)完成匹配查...
  • QHjust
  • QHjust
  • 2016年05月23日 17:03
  • 990

python kmp算法简单实现

def getnext(a,next): al = len(a) next[0] = -1 k = -1 j = 0 while j < al-1: ...

Python - KMP算法

def KMP_match(src, pat, nex): i = 0 j = 0 n = len(src) m = len(pat) while(i < n): if(src[i] =...

KMP算法真的很简单1

spark 11.9999 Normal 0 7.8 pt 0 2 false false false ...

KMP Python

KMP is an advanced algorithm for search an substring in a string. It mains definite finite states. ...

KMP算法详解

kmp算法又称“看毛片”算法,是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好...

KMP算法(Python实现)

BF算法的时间复杂度:在最坏的情况下,BF算法要将目标串的每一个字符同模式串进行比较一遍,假定目标串长度为m,模式串长度为n,总的时间复杂度为O(m*n)。而对于KMP算法,进行比较的时间复杂度为O(...

字符串匹配算法综述:BF、RK、KMP、BM、Sunday

字符串匹配算法综述:BF、RK、KMP、BM、Sunday

sunday、kmp、 bm、 horspool字符串匹配算法 code

kmp bm字符串匹配算法代码实现 #include #include #include // 失配时,pat的下一跳位置(pat = "abab"; value[] = {-1, 0, -1...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:字符串匹配算法(KMP、BM和Sunday),及Python实现
举报原因:
原因补充:

(最多只允许输入30个字)